374 research outputs found

    Harnessing plant trichome biochemistry for the production of useful compounds

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71403/1/j.1365-313X.2008.03432.x.pd

    The tomato cis– prenyltransferase gene family

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/1/tpj12063-sup-0004-FigureS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/2/tpj12063-sup-0005-FigureS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/3/tpj12063-sup-0002-FigureS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/4/tpj12063-sup-0003-FigureS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/5/tpj12063-sup-0001-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/6/tpj12063.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96709/7/tpj12063-sup-0006-TableS1.pd

    Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines

    Get PDF
    Glandular secreting trichomes of cultivated tomato (Solanum lycopersicum) and close relatives produce a variety of structurally diverse volatile and non-volatile specialized (‘secondary’) metabolites, including terpenes, flavonoids and acyl sugars. A genetic screen is described here to profile leaf trichome and surface metabolite extracts of nearly isogenic chromosomal substitution lines covering the tomato genome. These lines contain specific regions of the Solanum pennellii LA0716 genome in an otherwise ‘wild-type’ M82 tomato genetic background. Regions that have an impact on the total amount of extractable mono- and sesquiterpenes (IL2-2) or only sesquiterpenes (IL10-3) or specifically influence accumulation of the monoterpene α-thujene (IL1-3 and IL1-4) were identified using GC-MS. A rapid LC-TOF-MS method was developed and used to identify changes in non-volatile metabolites through non-targeted analysis. Metabolite profiles generated using this approach led to the discovery of introgression lines producing different acyl chain substitutions on acyl sugar metabolites (IL1-3/1-4 and IL8-1/8-1-1), as well as two regions that influence the quantity of acyl sugars (IL5-3 and IL11-3). Chromosomal region 1-1/1-1-3 was found to influence the types of glycoalkaloids that are detected in leaf surface extracts. These results show that direct chemical screening is a powerful way to characterize genetic diversity in trichome specialized metabolism

    The tomato terpene synthase gene family

    Get PDF
    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far

    Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid

    Get PDF
    Wounding of plants leads to endogenous rise of jasmonic acid (JA) accompanied with the expression of a distinct set of genes. Among them are those coding for the allene oxide cyclase (AOC) that catalyses a regulatory step in JA biosynthesis, and for 1-deoxy-D-xylulose 5-phosphate synthase 2 (DXS2), an enzyme involved in isoprenoid biosynthesis. To address the question how roots and shoots of Medicago truncatula respond to mechanostimulation and wounding, M. truncatula plants were analysed in respect to JA levels as well as MtAOC1 and MtDXS2-1 transcript accumulation. Harvest-caused mechanostimulation resulted in a strong, but transient increase in JA level in roots and shoots followed by a transient increase in MtAOC1 transcript accumulation. Additional wounding of either shoots or roots led to further increased JA and MtAOC1 transcript levels in shoots, but not in roots. In situ hybridization revealed a cell-specific transcript accumulation of MtAOC1 after mechanostimulation in companion cells of the vascular tissue of the stem. AOC protein, however, was found to occur constitutively in vascular bundles. Further, transcript accumulation of MtDXS2-1 was similar to that of MtAOC1 in shoots, but its transcript levels were not enhanced in roots. Repeated touching of shoots increased MtAOC1 transcript levels and led to significantly shorter shoots and increased biomass. In conclusion, M. truncatula plants respond very sensitively to mechanostimulation with enhanced JA levels and altered transcript accumulation, which might contribute to the altered phenotype after repeated touching of plants

    Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry

    Get PDF
    Trichomes are specialized epidermal structures that function as physical and chemical deterrents against arthropod herbivores. Aerial tissues of cultivated tomato (Solanum lycopersicum) are populated by several morphologically distinct trichome types, the most abundant of which is the type VI glandular trichome that produces various specialized metabolites. Here, the effect of the hairless (hl) mutation on trichome density and morphology, chemical composition, and resistance to a natural insect herbivore of tomato was investigated. The results show that the major effect of hl on pubescence results from structural distortion (bending and swelling) of all trichome types in aerial tissues. Leaf surface extracts and isolated type VI glands from hl plants contained wild-type levels of monoterpenes, glycoalkaloids, and acyl sugars, but were deficient in sesquiterpene and polyphenolic compounds implicated in anti-insect defence. No-choice bioassays showed that hl plants are compromised in resistance to the specialist herbivore Manduca sexta. These results establish a link between the morphology and chemical composition of glandular trichomes in cultivated tomato, and show that hl-mediated changes in these leaf surface traits correlate with decreased resistance to insect herbivory

    Control of Jasmonate Biosynthesis and Senescence by miR319 Targets

    Get PDF
    Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate

    Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides

    Get PDF
    Species of the genus Hypericum contain a rich array of unusual polyketides, however, only a small proportion of the over 450 Hypericum species, other than the popular medicinal supplement St. John’s Wort (H. perforatum), have even been chemically characterized. H. gentianoides, a small annual used medicinally by Cherokee Americans, contains bioactive acylphloroglucinols. Here, we identify acylphloroglucinol constituents of H. gentianoides and determine a potential pathway to their synthesis. Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESIMS) and HPLC-UV indicate that the level of accumulation and profile of acylphloroglucinols in H. gentianoides vary little seasonally when grown in a greenhouse, but do vary with development and are highly dependent on the accession, highlighting the importance of the selection of plant material for study. We identify the chemical structures of the nine prevalent polyketides, based on LC/ESI-MS and hybrid quadrupole orthogonal time-of-flight mass (Q-TOF) spectrometry; these metabolites include one monomeric phlorisobutyrophenone (PIB) derivative and eight dimeric acylphloroglucinols. Q-TOF spectrometry was used to identify eight additional PIB derivatives that were not detected by LC/ESI-MS. These data lead us to propose that diacylphloroglucinols are synthesized via modification of PIB to yield diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a phloroglucinol and a filicinic acid monomer to yield the observed complement of diacylphloroglucinols. The metabolomics data from H. gentianoides are accessible in PMR (http://www.metnetdb.org/pmr), a public metabolomics database with analysis software for plants and microbial organisms
    corecore