85 research outputs found

    Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Get PDF
    Background. Nitric oxide (NO)-signal transduction plays an important role in renal ischemia/reperfusion (I/R) injury. NO produced by endothelial NO-synthase (eNOS) has protective functions whereas NO from inducible NO-synthase (iNOS) induces impairment. Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor (PPAR)-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg) was administered i.p. to SD-rats (f) subjected to bilateral renal ischemia (60 min). Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3) was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion) and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury

    Balanced hydroxyethylstarch (HES 130/0.4) impairs kidney function in-vivo without inflammation

    Get PDF
    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansio

    Study protocol of the FIRE-8 (AIO-KRK/YMO-0519) trial: a prospective, randomized, open-label, multicenter phase II trial investigating the efficacy of trifluridine/tipiracil plus panitumumab versus trifluridine/tipiracil plus bevacizumab as first-line treatment in patients with metastatic colorectal cancer

    Get PDF
    Background: Initial systemic therapy for patients with metastatic colorectal cancer (mCRC) is usually based on two- or three-drug chemotherapy regimens with fluoropyrimidine (5-fluorouracil (5-FU) or capecitabine), oxaliplatin and/or irinotecan, combined with either anti-VEGF (bevacizumab) or, for RAS wild-type (WT) tumors, anti-EGFR antibodies (panitumumab or cetuximab). Recommendations for patients who are not eligible for intensive combination therapies are limited and include fluoropyrimidine plus bevacizumab or single agent anti-EGFR antibody treatment. The use of a monochemotherapy concept of trifluridine/ tipiracil in combination with monoclonal antibodies is not approved for first-line therapy, yet. Results from the phase II TASCO trial evaluating trifluridine/tipiracil plus bevacicumab in first-line treatment of mCRC patients and from the phase I/II APOLLON trial investigating trifluridine/tipiracil plus panitumumab in pre-treated mCRC patients suggest favourable activity and tolerability of these new therapeutic approaches. Methods: FIRE-8 (NCT05007132) is a prospective, randomized, open-label, multicenter phase II study which aims to evaluate the efficacy of first-line treatment with trifluridine/tipiracil (35 mg/m(2) body surface area (BSA), orally twice daily on days 1-5 and 8-12, q28 days) plus either the anti-EGFR antibody panitumumab (6 mg/kg body weight, intravenously on day 1 and 15, q28 days) [arm A] or (as control arm) the anti-VEGF antibody bevacizumab (5 mg/kg body weight, intravenously on day 1 and 15, q28 days) [arm B] in RAS WT mCRC patients. The primary objective is to demonstrate an improved objective response rate (ORR) according to RECIST 1.1 from 30% (control arm) to 55% with panitumumab. With a power of 80% and a two-sided significance level of 0.05, 138 evaluable patients are needed. Given an estimated drop-out rate of 10%, 153 patients will be enrolled. Discussion: To the best of our knowledge, this is the first phase II trial to evaluate the efficacy of trifluridine/tipiracil plus panitumumab in first-line treatment of RAS WT mCRC patients. The administration of anti-EGFR antibodies rather than anti-VEGF antibodies in combination with trifluridine/tipiracil may result in an increased initial efficacy

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    Get PDF
    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P <10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P <5 x 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.Peer reviewe

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore