371 research outputs found

    Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432

    Full text link
    Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {\SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at 0.21\enDash0.32~\AU and an optically thick outer disk at 1.4\enDash10~\AU. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick component may coexist in the same region. Our modeling also suggests a gap-like discontinuity in the disk of HD~144432.Comment: 18 pages, 12 figure

    Disks around massive young stellar objects: are they common?

    Full text link
    We present K-band polarimetric images of several massive young stellar objects at resolutions \sim 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ

    AMBER/VLTI observations of the B[e] star MWC 300

    Get PDF
    Aims. We study the enigmatic B[e] star MWC 300 to investigate its disk and binary with milli-arcsecond-scale angular resolution. Methods. We observed MWC 300 with the VLTI/AMBER instrument in the H and K bands and compared these observations with temperature-gradient models to derive model parameters. Results. The measured low visibility values, wavelength dependence of the visibilities, and wavelength dependence of the closure phase directly suggest that MWC 300 consists of a resolved disk and a close binary. We present a model consisting of a binary and a temperature-gradient disk that is able to reproduce the visibilities, closure phases, and spectral energy distribution. This model allows us to constrain the projected binary separation (~4.4 mas or ~7.9 AU), the flux ratio of the binary components (~2.2), the disk temperature power-law index, and other parameters.Comment: 4 pages, 1 figure, accepted by A&

    Bispectrum speckle interferometry of the massive protostellar outflow source IRAS 23151+5912

    Full text link
    We present bispectrum speckle interferometry of the massive protostellar object IRAS 23151+5912 in the near-infrared K' band. The reconstructed image shows the diffuse nebulosity north-east of two point-like sources in unprecedented detail. The comparison of our near-infrared image with mm continuum and CO molecular line maps shows that the brighter of the two point sources lies near the center of the mm peak, indicating that it is a high-mass protostar. The nebulosity coincides with the blue-shifted molecular outflow component. The most prominent feature in the nebulosity is a bow-shock-like arc. We assume that this feature is associated with a precessing jet which has created an inward-pointed cone in the swept-up material. We present numerical jet simulations that reproduce this and several other features observed in our speckle image of the nebulosity. Our data also reveal a linear structure connecting the central point source to the extended diffuse nebulosity. This feature may represent the innermost part of a jet that drives the strong molecular outflow (PA ~80 degr) from IRAS 23151+5912. With the aid of radiative transfer calculations, we demonstrate that, in general, the observed inner structures of the circumstellar material surrounding high-mass stars are strongly influenced by the orientation and symmetry of the bipolar cavity.Comment: accepted by Astronomy & Astrophysics; preprints with high-resolution images can be obtained from http://www.mpifr-bonn.mpg.de/staff/tpreibis/iras23151.htm

    AMBER/VLTI high spectral resolution observations of the Brγ\gamma emitting region in HD 98922. A compact disc wind launched from the inner disc region

    Get PDF
    We analyse the main physical parameters and the circumstellar environment of the young Herbig Be star HD 98922. We present AMBER/VLTI high spectral resolution (R =12000) interferometric observations across the Brγ\gamma line, accompanied by UVES high-resolution spectroscopy and SINFONI-AO assisted near-infrared integral field spectroscopic data. To interpret our observations, we develop a magneto-centrifugally driven disc-wind model. Our analysis of the UVES spectrum shows that HD 98922 is a young (~5x10^5 yr) Herbig Be star (SpT=B9V), located at a distance of 440(+60-50) pc, with a mass accretion rate of ~9+/-3x10^(-7) M_sun yr^(-1). SINFONI K-band AO-assisted imaging shows a spatially resolved circumstellar disc-like region (~140 AU in diameter) with asymmetric brightness distribution. Our AMBER/VLTI UT observations indicate that the Brγ\gamma emitting region (radius ~0.31+/-0.04 AU) is smaller than the continuum emitting region (inner dust radius ~0.7+/-0.2 AU), showing significant non-zero V-shaped differential phases (i.e. non S-shaped, as expected for a rotating disc). The value of the continuum-corrected pure Brγ\gamma line visibility at the longest baseline (89 m) is ~0.8+/-0.1, i.e. the Brγ\gamma emitting region is partially resolved. Our modelling suggests that the observed Brγ\gamma line-emitting region mainly originates from a disc wind with a half opening angle of 30deg, and with a mass-loss rate of ~2x10(-7) M_sun yr^(-1). The observed V-shaped differential phases are reliably reproduced by combining a simple asymmetric continuum disc model with our Brγ\gamma disc-wind model. The Brγ\gamma emission of HD 98922 can be modelled with a disc wind that is able to approximately reproduce all interferometric observations if we assume that the intensity distribution of the dust continuum disc is asymmetric.Comment: Accepted for publication on Astronomy \& Astrophysics. High resolution figures published on the main journal (see Astronomy & Astrophysics: Forthcoming) or at www.researchgate.net/profile/Alessio_Caratti_o_Garatti/publication

    An equatorial wind from the massive young stellar object S140 IRS 1

    Get PDF
    The discovery of the second equatorial ionized stellar wind from a massive young stellar object is reported. High resolution radio continuum maps of S140 IRS 1 reveal a highly elongated source that is perpendicular to the larger scale bipolar molecular outflow. This picture is confirmed by location of a small scale monopolar near-IR reflection nebula at the base of the blueshifted lobe. A second epoch of observations over a five year baseline show little ordered outward proper motion of clumps as would have been expected for a jet. A third epoch, taken only 50 days after the second, did show significant changes in the radio morphology. These radio properties can all be understood in the context of an equatorial wind driven by radiation pressure from the central star and inner disc acting on the gas in the surface layers of the disc as proposed by Drew et al. (1998). This equatorial wind system is briefly compared with the one in S106IR, and contrasted with other massive young stellar objects that drive ionized jets.Comment: 19 pages, 5 figures, accepted by ApJ, minor changes in light of referees repor

    Diagnostics for specific PAHs in the far-IR: searching neutral naphthalene and anthracene in the Red Rectangle

    Get PDF
    Context. In the framework of the interstellar polycyclic aromatic hydrocarbons (PAHs) hypothesis, far-IR skeletal bands are expected to be a fingerprint of single species in this class. Aims. We address the question of detectability of low energy PAH vibrational bands, with respect to spectral contrast and intensity ratio with ``classical'' Aromatic Infrared Bands (AIBs). Methods. We extend our extablished Monte-Carlo model of the photophysics of specific PAHs in astronomical environments, to include rotational and anharmonic band structure. The required molecular parameters were calculated in the framework of the Density Functional Theory. Results. We calculate the detailed spectral profiles of three low-energy vibrational bands of neutral naphthalene, and four low-energy vibrational bands of neutral anthracene. They are used to establish detectability constraints based on intensity ratios with ``classical'' AIBs. A general procedure is suggested to select promising diagnostics, and tested on available Infrared Space Observatory data for the Red Rectangle nebula. Conclusions. The search for single, specific PAHs in the far-IR is a challenging, but promising task, especially in view of the forthcoming launch of the Herschel Space Observatory.Comment: 13 pages, 13 figures, accepted for publication in A&

    GI2T/REGAIN spectro-interferometry with a new infrared beam combiner

    Get PDF
    We have built an infrared beam combiner for the GI2T/REGAIN interferometer of the Observatoire de la Cote d'Azur. The beam combiner allows us to record spectrally dispersed Michelson interference fringes in the near-infrared J-, H- or K-bands. The beam combiner has the advantage that Michelson interferograms can simultaneously be recorded in about 128 different spectral channels. The tilt of the spectrally dispersed fringes is a measure of the instantaneous optical path difference. We present the optical design of the beam combiner and GI2T/REGAIN observations of the Mira star R Cas with this beam combiner in the spectral range of 2.00 micron - 2.18 micron (observations on 22 and 25 August 1999; variability phase 0.08; V-magnitude approx. 6; seven baselines between 12m and 24m; reference stars Vega and Beta Peg). The spectrograph of the beam combiner consists of an anamorphotic cylindrical lens system, an image plane slit, and a grism. A system of digital signal processors calculates the ensemble average power spectrum of the spectrally dispersed Michelson interferograms and the instantaneous optical path difference error in real time. From the observed R Cas visibilities at baselines 12.0m, 13.8m and 13.9m, a 2.1 micron uniform-disk diameter of 25.3mas +/-3.3mas was derived. The unusually high visibility values at baselines >16m show that the stellar surface of R Cas is more complex than previously assumed. The visibility values at baselines >16m can be explained by high-contrast surface structure on the stellar surface of R Cas or other types of unexpected center-to-limb variations. The R Cas observations were compared with theoretical Mira star models yielding a linear Rosseland radius of 276Rsun +/-66Rsun and an effective temperature of 2685K+/-238K for R Cas at phase 0.08.Comment: 10 pages, 6 figures, see also http://www.mpifr-bonn.mpg.de/div/speckle, SPIE conf 4006 "Interferometry in Optical Astronomy", in pres

    The inner circumstellar disk of the UX Ori star V1026 Sco

    Full text link
    The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. We investigate the structure of the circumstellar environment of the UX~Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 +- 0.06 AU in the H band and 0.18 +- 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257^{+133}_{-53} K at the inner rim and extends from 0.19 +- 0.01 AU to 0.23 +- 0.02 AU. The outer disk begins at 1.35^{+0.19}_{-0.20} AU and has an inner temperature of 334^{+35}_{-17} K. The derived inclination of 48.6^{+2.9}_{-3.6}deg approximately agrees with the inclination derived with the geometric model (49 +- 5deg in the K band and 50 +- 11deg in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 +- 9deg (K band; 179 +- 17deg in the H band) and 169.3^{+4.2}_{-6.7}deg, respectively. The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50deg is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star

    Speckle interferometry and radiative transfer modelling of the Wolf-Rayet star WR 118

    Get PDF
    WR 118 is a highly evolved Wolf-Rayet star of the WC10 subtype surrounded by a permanent dust shell absorbing and re-emitting in the infrared a considerable fraction of the stellar luminosity. We present the first diffraction-limited 2.13micron speckle interferometric observations of WR 118 with 73 mas resolution. The speckle interferograms were obtained with the 6m telescope at the Special Astrophysical Observatory. The two-dimensional visibility function of the object does not show any significant deviation from circular symmetry. The visibility curve declines towards the diffraction cut-off frequency to 0.66 and can be approximated by a linear function. Radiative transfer calculations have been carried out to model the spectral energy distribution, given in the range of 0.5-25micron, and our 2.13micron visibility function, assuming spherical symmetry of the dust shell. Both can be fitted with a model containing double-sized grains (``small'' and ``large'') with the radii of a = 0.05micron and 0.38micron, and a mass fraction of the large grains greater than 65%. Alternatively, a good match can be obtained with the grain size distribution function n(a)~a^-3, with a ranging between 0.005micron and 0.6micron. At the inner boundary of the modelled dust shell (angular diameter (17 +/- 1)mas), the temperature of the smallest grains and the dust shell density are 1750K +/- 100K and (1 +/- 0.2)x10^-19 g/cm^3, respectively. The dust formation rate is found to be (1.3 +/- 0.5)x10^-7 Msol/yr assuming Vwind = 1200 km/s.Comment: 6 pages including 4 PostScript figures, also available from http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.html; accepted for publication in Astronomy & Astrophysic
    corecore