Studies of pre-transitional disks, with a gap region between the inner
infrared-emitting region and the outer disk, are important to improving our
understanding of disk evolution and planet formation. Previous infrared
interferometric observations have shown hints of a gap region in the
protoplanetary disk around the Herbig Ae star HD~144432. We study the dust
distribution around this star with two-dimensional radiative transfer modeling.
We compare the model predictions obtained via the Monte-Carlo radiative
transfer code RADMC-3D with infrared interferometric observations and the
{\SED} of HD~144432. The best-fit model that we found consists of an inner
optically thin component at 0.21\enDash0.32~\AU and an optically thick outer
disk at 1.4\enDash10~\AU. We also found an alternative model in which the
inner sub-AU region consists of an optically thin and an optically thick
component. Our modeling suggests an optically thin component exists in the
inner sub-AU region, although an optically thick component may coexist in the
same region. Our modeling also suggests a gap-like discontinuity in the disk of
HD~144432.Comment: 18 pages, 12 figure