WR 118 is a highly evolved Wolf-Rayet star of the WC10 subtype surrounded by
a permanent dust shell absorbing and re-emitting in the infrared a considerable
fraction of the stellar luminosity. We present the first diffraction-limited
2.13micron speckle interferometric observations of WR 118 with 73 mas
resolution. The speckle interferograms were obtained with the 6m telescope at
the Special Astrophysical Observatory. The two-dimensional visibility function
of the object does not show any significant deviation from circular symmetry.
The visibility curve declines towards the diffraction cut-off frequency to 0.66
and can be approximated by a linear function. Radiative transfer calculations
have been carried out to model the spectral energy distribution, given in the
range of 0.5-25micron, and our 2.13micron visibility function, assuming
spherical symmetry of the dust shell. Both can be fitted with a model
containing double-sized grains (``small'' and ``large'') with the radii of a =
0.05micron and 0.38micron, and a mass fraction of the large grains greater than
65%. Alternatively, a good match can be obtained with the grain size
distribution function n(a)~a^-3, with a ranging between 0.005micron and
0.6micron. At the inner boundary of the modelled dust shell (angular diameter
(17 +/- 1)mas), the temperature of the smallest grains and the dust shell
density are 1750K +/- 100K and (1 +/- 0.2)x10^-19 g/cm^3, respectively. The
dust formation rate is found to be (1.3 +/- 0.5)x10^-7 Msol/yr assuming Vwind =
1200 km/s.Comment: 6 pages including 4 PostScript figures, also available from
http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.html;
accepted for publication in Astronomy & Astrophysic