899 research outputs found

    A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys

    Get PDF
    A non-polymorphic antigen associated with the rhoptry organelles of Plasmodium falciparum has been purified by immuno-affinity chromatography. The antigen, RAP-1 (rhoptry associated protein-1). which is defined by monoclonal antibodies which inhibit parasite growth in vitro, is a multi-component antigen consisting of four major proteins of 80, 65, 42 and 40 kDa and two minor proteins of 77 and 70 kDa. These proteins were electro-eluted from preparative sodium dodecyl sulphate polyacrylamide gels and protected Saimiri sciureus monkeys from a lethal blood-stage infection of P. falciparum malaria. Sera from the protected animals recognized only proteins of the RAP-1 antigen when used to probe a Western blot of total parasite protein extract, confirming that RAP-1 is responsible for eliciting the protective immune respons

    Optical nonlinearity enhancement of graded metal-dielectric composite films

    Full text link
    We have derived the local electric field inside graded metal-dielectric composite films with weak nonlinearity analytically, which further yields the effective linear dielectric constant and third-order nonlinear susceptibility of the graded structures. As a result, the composition-dependent gradation can produce a broad resonant plasmon band in the optical region, resulting in a large enhancement of the optical nonlinearity and hence a large figure of merit.Comment: 11 pages, 2 figures. To be published in Europhysics Letter

    An excess of emission in the dark cloud LDN 1111 with the Arcminute Microkelvin Imager

    Full text link
    We present observations of the Lynds' dark nebula LDN 1111 made at microwave frequencies between 14.6 and 17.2 GHz with the Arcminute Microkelvin Imager (AMI). We find emission in this frequency band in excess of a thermal free--free spectrum extrapolated from data at 1.4 GHz with matched uv-coverage. This excess is > 15 sigma above the predicted emission. We fit the measured spectrum using the spinning dust model of Drain & Lazarian (1998a) and find the best fitting model parameters agree well with those derived from Scuba data for this object by Visser et al. (2001).Comment: accepted MNRA

    AMI observations of Lynds Dark Nebulae: further evidence for anomalous cm-wave emission

    Get PDF
    Observations at 14.2 to 17.9 GHz made with the AMI Small Array towards fourteen Lynds Dark Nebulae with a resolution of 2' are reported. These sources are selected from the SCUBA observations of Visser et al. (2001) as small angular diameter clouds well matched to the synthesized beam of the AMI Small Array. Comparison of the AMI observations with radio observations at lower frequencies with matched uv-plane coverage is made, in order to search for any anomalous excess emission which can be attributed to spinning dust. Possible emission from spinning dust is identified as a source within a 2' radius of the Scuba position of the Lynds dark nebula, exhibiting an excess with respect to lower frequency radio emission. We find five sources which show a possible spinning dust component in their spectra. These sources have rising spectral indices in the frequency range 14.2--17.9 GHz. Of these five one has already been reported, L1111, we report one new definite detection, L675, and three new probable detections (L944, L1103 and L1246). The relative certainty of these detections is assessed on the basis of three criteria: the extent of the emission, the coincidence of the emission with the Scuba position and the likelihood of alternative explanations for the excess. Extended microwave emission makes the likelihood of the anomalous emission arising as a consequence of a radio counterpart to a protostar or a proto-planetary disk unlikely. We use a 2' radius in order to be consistent with the IRAS identifications of dark nebulae (Parker 1988), and our third criterion is used in the case of L1103 where a high flux density at 850 microns relative to the FIR data suggests a more complicated emission spectrum.Comment: submitted MNRA

    Signatures from a merging galaxy cluster and its AGN population : LOFAR observations of Abell 1682

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOWe present LOFAR data from 110-180 MHz of the merging galaxy cluster Abell 1682, alongside archival optical, radio, and X-ray data. Our images of 6 arcsec in resolution at low frequencies reveal new structures associated with numerous radio galaxies in the cluster. At a resolution of 20 arcsec we see diffuse emission throughout the cluster over hundreds of kiloparsecs, indicating particle acceleration mechanisms are in play as a result of the cluster merger event and powerful active galactic nuclei. We show that a significant part of the cluster emission is from an old radio galaxy with very steep spectrum emission (having a spectral index of α < -2.5). Furthermore, we identify a new region of diffuse steep-spectrum emission (α < -1.1) as a candidate for a radio halo which is co-spatial with the centre of the cluster merger. We suggest its origin as a population of old and mildly relativistic electrons left over from radio galaxies throughout the cluster which have been re-accelerated to higher energies by shocks and turbulence induced by the cluster merger event. We also note the discovery of six new giant radio galaxies in the vicinity of Abell 1682.Peer reviewedFinal Accepted Versio

    A combined theoretical and experimental study of the low temperature properties of BaZrO3

    Full text link
    Low temperature properties of BaZrO3 are revealed by combining experimental techniques (X-ray diffraction, neutron scattering and dielectric measurements) with theoretical first-principles-based methods (total energy and linear response calculations within density functional theory, and effective Hamiltonian approaches incorporating/neglecting zero-point phonon vibrations). Unlike most of the perovskite systems, BaZrO3 does not undergo any (long-range-order) structural phase transition and thus remains cubic and paraelectric down to 2 K, even when neglecting zero-point phonon vibrations. On the other hand, these latter pure quantum effects lead to a negligible thermal dependency of the cubic lattice parameter below ~ 40 K. They also affect the dielectricity of BaZrO3 by inducing an overall saturation of the real part of the dielectric response, for temperatures below ~ 40 K. Two fine structures in the real part, as well as in the imaginary part, of dielectric response are further observed around 50-65 K and 15 K, respectively. Microscopic origins (e.g., unavoidable defects and oxygen octahedra rotation occurring at a local scale) of such anomalies are suggested. Finally, possible reasons for the facts that some of these dielectric anomalies have not been previously reported in the better studied KTaO3 and SrTiO3 incipient ferroelectrics are also discussed.Comment: 8 pages, 5 figures, submitted to Physical Review

    AMI Large Array radio continuum observations of Spitzer c2d small clouds and cores

    Full text link
    We perform deep 1.8 cm radio continuum imaging towards thirteen protostellar regions selected from the Spitzer c2d small clouds and cores programme at high resolution (25") in order to detect and quantify the cm-wave emission from deeply embedded young protostars. Within these regions we detect fifteen compact radio sources which we identify as radio protostars including two probable new detections. The sample is in general of low bolometric luminosity and contains several of the newly detected VeLLO sources. We determine the 1.8 cm radio luminosity to bolometric luminosity correlation, L_rad -L_bol, for the sample and discuss the nature of the radio emission in terms of the available sources of ionized gas. We also investigate the L_rad-L_IR correlation and suggest that radio flux density may be used as a proxy for the internal luminosity of low luminosity protostars.Comment: submitted MNRA

    The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR

    Get PDF
    The grand-design spiral galaxy M51 was observed with the LOFAR High Frequency Antennas (HBA) and imaged in total intensity and polarisation. This observation covered the frequencies between 115 MHz and 175 MHz. We produced an image of total emission of M51 at the mean frequency of 151 MHz with 20 arcsec resolution and 0.3 mJy rms noise, which is the most sensitive image of a galaxy at frequencies below 300 MHz so far. The integrated spectrum of total radio emission is described well by a power law, while flat spectral indices in the central region indicate thermal absorption. We observe that the disk extends out to 16 kpc and see a break in the radial profile near the optical radius of the disk. Our main results, the scale lengths of the inner and outer disks at 151 MHz and 1.4 GHz, arm--interarm contrast, and the break scales of the radio--far-infrared correlations, can be explained consistently by CRE diffusion, leading to a longer propagation length of CRE of lower energy. The distribution of CRE sources drops sharply at about 10 kpc radius, where the star formation rate also decreases sharply. We find evidence that thermal absorption is primarily caused by HII regions. The non-detection of polarisation from M51 at 151 MHz is consistent with the estimates of Faraday depolarisation. Future searches for polarised emission in this frequency range should concentrate on regions with low star formation rates.Comment: 20 pages, 18 figures, accepted for publication in A&

    High resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 micron emission and evidence of a stellar wind in L675

    Full text link
    We present 25 arcsecond resolution radio images of five Lynds Dark Nebulae (L675, L944, L1103, L1111 & L1246) at 16 GHz made with the Arcminute Microkelvin Imager (AMI) Large Array. These objects were previously observed with the AMI Small Array to have an excess of emission at microwave frequencies relative to lower frequency radio data. In L675 we find a flat spectrum compact radio counterpart to the 850 micron emission seen with SCUBA and suggest that it is cm-wave emission from a previously unknown deeply embedded young protostar. In the case of L1246 the cm-wave emission is spatially correlated with 8 micron emission seen with Spitzer. Since the MIR emission is present only in Spitzer band 4 we suggest that it arises from a population of PAH molecules, which also give rise to the cm-wave emission through spinning dust emission.Comment: accepted MNRA
    • 

    corecore