Low temperature properties of BaZrO3 are revealed by combining experimental
techniques (X-ray diffraction, neutron scattering and dielectric measurements)
with theoretical first-principles-based methods (total energy and linear
response calculations within density functional theory, and effective
Hamiltonian approaches incorporating/neglecting zero-point phonon vibrations).
Unlike most of the perovskite systems, BaZrO3 does not undergo any
(long-range-order) structural phase transition and thus remains cubic and
paraelectric down to 2 K, even when neglecting zero-point phonon vibrations. On
the other hand, these latter pure quantum effects lead to a negligible thermal
dependency of the cubic lattice parameter below ~ 40 K. They also affect the
dielectricity of BaZrO3 by inducing an overall saturation of the real part of
the dielectric response, for temperatures below ~ 40 K. Two fine structures in
the real part, as well as in the imaginary part, of dielectric response are
further observed around 50-65 K and 15 K, respectively. Microscopic origins
(e.g., unavoidable defects and oxygen octahedra rotation occurring at a local
scale) of such anomalies are suggested. Finally, possible reasons for the facts
that some of these dielectric anomalies have not been previously reported in
the better studied KTaO3 and SrTiO3 incipient ferroelectrics are also
discussed.Comment: 8 pages, 5 figures, submitted to Physical Review