84 research outputs found

    Impacts de l'Ă©volution climatique postglaciaire sur les lacs de l'extrĂȘme nord de l'Ungava, QuĂ©bec

    Get PDF

    Response of Lacustrine Biota to Late Holocene Climate and Environmental Conditions in Northernmost Ungava (Canada)

    Get PDF
    Sediment cores from three lakes located in the northernmost region of Ungava, QuĂ©bec (Canada) were examined to define aquatic community and ecosystem variability during the Late Holocene period. A chironomid-based transfer function was used to reconstruct August air temperature trends, and lacustrine primary production was inferred from sedimentary biogenic silica content and siliceous microfossil abundances. Trends in primary production, sediment organic matter content (estimated through loss on ignition), and chironomid-inferred temperature were compared to explore potential effects of environmental change on biotic assemblage composition at centennial to millennial time scales. Although no direct correlation between chironomid-inferred August air temperature and primary production was observed, we found indications that both chironomid and diatom communities were responding to the same overarching regional climatic and environmental processes. Over the last decade, northern QuĂ©bec has been undergoing notable, rapid warming that contrasts with the relative inertia of the past few millennia. This study provides a baseline against which recent and future environmental changes in this region can be compared. Les archives sĂ©dimentaires couvrant la pĂ©riode de l’HolocĂšne tardif ont Ă©tĂ© examinĂ©es dans trois lacs situĂ©s dans la rĂ©gion du nord de l’Ungava, au QuĂ©bec (Canada). Un modĂšle d’infĂ©rence basĂ© sur les assemblages de chironomides a Ă©tĂ© utilisĂ© pour reconstruire la variabilitĂ© des tempĂ©ratures de l’air du mois d’aoĂ»t, et la production primaire lacustre a Ă©tĂ© infĂ©rĂ©e par le contenu sĂ©dimentaire en silice biogĂ©nique et les abondances des microfossiles siliceux. Les variations historiques de la production primaire, du contenu organique du sĂ©diment (Ă©valuĂ© par la perte au feu) et les tempĂ©ratures infĂ©rĂ©es ont Ă©tĂ© comparĂ©es afin d’explorer les effets potentiels des changements environnementaux sur la composition des assemblages Ă  diffĂ©rentes Ă©chelles temporelles (centenaires Ă  millĂ©naires). MalgrĂ© le fait qu’aucune corrĂ©lation directe n’ait Ă©tĂ© observĂ©e entre les tempĂ©ratures infĂ©rĂ©es en aoĂ»t et la productivitĂ© primaire, certaines indications suggĂšrent que les communautĂ©s de chironomides et de diatomĂ©es rĂ©pondaient aux mĂȘmes processus climatiques et environnementaux rĂ©gionaux. Au cours de la derniĂšre dĂ©cennie, le nord du QuĂ©bec a connu un rĂ©chauffement rapide et marquĂ©, contrastant avec l’inertie relative des derniers millĂ©naires. Cette Ă©tude fournit le scĂ©nario de rĂ©fĂ©rence par rapport auquel les changements environnementaux actuels et futurs pourront ĂȘtre comparĂ©s dans cette rĂ©gion

    Long-Term Hydrologic Fluctuations and Dynamics of Primary Producers in a Tropical Crater Lake

    Get PDF
    Aquatic ecosystems in tropical regions remain understudied and their long-term dynamics poorly understood. In East Africa, a better understanding of how natural communities of primary producers in small freshwater ecosystems respond to climatic variability is needed to improve management and conservation of aquatic resources. This study explored the response of algae and bacteria communities to marked hydrological variation over the past 1,500 years in a small western Ugandan crater lake, Lake Nkuruba. We analyzed sedimentary algal and bacterial pigments to evaluate the magnitude and direction of change in the autotrophic community in response to severe climatic perturbations in the region. The lithology of the Lake Nkuruba sediment core indicated that external forcing in the form of a major drought, associated with the Medieval Climate Anomaly, caused a heavy, short-lived detrital pulse to the basin that led to a brief but substantial disruption of the lake system in the second half of the Thirteenth century. The system appears to have recovered rapidly, and then transitioned to a more productive state than the one preceding the drought. The considerable variation observed in the sedimentary pigment biomarkers is likely linked with climatically-induced changes in the water column structure of this small crater lake. Our results highlight the challenge of defining appropriate baselines or reference conditions in climatically-sensitive East African aquatic ecosystems and disentangling long-term anthropogenic impacts from the strong regional hydrological flux at the decadal to centennial scale

    Late-Glacial Paleoecology of the Middle Susitna Valley, Alaska: Environmental Context for Human Dispersal

    Get PDF
    We present here the results of multi-proxy analyses (sediment geochemistry, diatoms, and pollen) from sediment cores collected at four lakes in the middle Susitna Valley, Alaska. These lakes form a transect from the tundra to the boreal forest. The retrieved cores span from ∌12,000 cal yr BP to the present, with age control provided by radiometric dates and tephra deposits, some of which are newly identified. Results indicate that deglaciation occurred before 12,000 cal yr BP and that by that time, the lakes were deep, productive, and surrounded by shrub tundra. The lake with the highest sampling resolution indicates a brief climatic reversal ∌11,500 cal yr BP with decreased diatom-inferred lake level and lowered lake productivity, and reduced shrub presence. During the early to middle Holocene, all of the sedimentary records provide evidence of climatic amelioration with tree expansion and productive lakes. A middle to late Holocene climatic deterioration with reduced trees and a shallower, less productive lake is also indicated. In addition, the prominent Watana tephra at ∌4,000 cal yr BP likely reduced lake productivity and affected the vegetation. Even though the region was relatively productive soon after deglaciation, people did not occupy the region until ∌11,000 cal yr BP, about 1000 years later, and then only sparsely. By the middle and late Holocene, the region was more densely populated and this shift in human occupancy presumably reflects changes in resource abundance, especially caribou. Whether the Watana ashfall influenced caribou abundance and thus people, is still under investigation, but given the tephra’s effect on vegetation and lake productivity, it seems likely

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring

    Get PDF
    Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the pastc.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60 degrees N and 75 degrees N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (beta-diversity) in the pastc.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes

    Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    Get PDF
    Global aquatic ecosystems are under increasing threat from anthropogenic activity, as well as being exposed to past (and projected) climate change, however, the nature of how climate and human impacts are recorded in lake sediments is often ambiguous. Natural and anthropogenic drivers can force a similar response in lake systems, yet the ability to attribute what change recorded in lake sediments is natural, from that which is anthropogenic, is increasingly important for understanding how lake systems have, and will continue to function when subjected to multiple stressors; an issue that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others(e.g. New Zealand). A wide array of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real‐time’ data pre‐dating human impact, palaeolimnological archives offer the only insight into both natural variability (i.e. that driven by climate and intrinsic lake processes) and the impact of people. Whilst there is a need to acknowledge complexity, and temporal and spatial variability when deciphering change from sediment archives, a palaeolimnological approach is a powerful tool for better understanding and managing global aquatic resources

    Vegetation transitions drive the autotrophy-heterotrophy balance in Arctic lakes

    Get PDF
    “Arctic greening” will alter vegetation quantity and quality in northern watersheds, with possible consequences for lake metabolic balance. We used paleolimnology from six Arctic lakes in Greenland, Norway, and Alaska to develop a conceptual model describing how climate-driven shifts in terrestrial vegetation (spanning herb to boreal forest) influence lake autotrophic biomass (as chlorophyll and carotenoid pigments). Major autotrophic transitions occurred, including (1) optimal production of siliceous algae and cyanobacteria/chlorophytes at intermediate vegetation cover (dwarf shrub and Betula; dissolved organic carbon (DOC) range of 2–4 mg L21 ), below and above which UVR exposure (DOC; 4 mgL21 ), respectively limit algal biomass, (2) an increase in potentially mixotrophic cryptophytes with higher forest cover and allochthonous carbon supply. Vegetation cover appears to influence lake autotrophs by changing influx of (colored) dissolved organic matter which has multiple interacting roles—as a photoprotectant—in light attenuation and in macronutrient (carbon, nitrogen) supply

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams : Current reference conditions and historical context for biomonitoring

    Get PDF
    1. Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. 2. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. 3. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the past c.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. 4. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60°N and 75°N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. 5. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (ÎČ-diversity) in the past c.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. 6. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes

    Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada

    Get PDF
    Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the 'classical' age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20±10 yr/cm), whereas lakes in tundra settings accumulate at moderate (mean DT 70±10 yr/cm) to very slow rates, (>100yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9000cal BP (BP=years before AD 1950). From between c. 9000cal BP and c. 6000cal BP, sediment accumulation was relatively rapid (DT of 20-60yr/cm). Accumulation slowed between c. 5500 and c. 4000cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1200cal BP at three lakes. Our research will help inform priors in Bayesian age modeling
    • 

    corecore