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Abstract  31 

Age-depth modeling using Bayesian statistics requires well-informed prior information 32 

about the behavior of sediment accumulation.  Here we present average sediment 33 

accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic 34 

setting, and we examine the variability across space (intra- and inter-lake) and time (late 35 

Holocene).  The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, 36 

from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone 37 

gradients in subarctic Canada.  There are four to twenty-five radiocarbon dates per core, 38 

depending on the length and character of the sediment records.  Deposition times were 39 

calculated at 100-year intervals from age-depth models constructed using the ‘classical’ 40 

age-depth modeling software Clam.  Lakes in boreal settings have the most rapid 41 

accumulation (mean DT 20 ± 10 years), whereas lakes in tundra settings accumulate at 42 

moderate (mean DT 70 ± 10 years) to very slow rates, (>100 yr/cm).  Many of the age-43 

depth models demonstrate fluctuations in accumulation that coincide with lake evolution 44 

and post-glacial climate change.  Ten of our sediment cores yielded sediments as old as c. 45 

9,000 cal BP (BP = years before AD 1950).  From between c. 9,000 cal BP and c. 6,000 46 

cal BP, sediment accumulation was relatively rapid (DT of 20 to 60 yr/cm).  47 

Accumulation slowed between c. 5,500 and c. 4,000 cal BP as vegetation expanded 48 

northward in response to warming.  A short period of rapid accumulation occurred near 49 

1,200 cal BP at three lakes.  Our research will help inform priors in Bayesian age 50 

modeling.  51 

Keywords 52 

Bayesian age-depth modeling, accumulation rate, deposition time, Bacon, Subarctic, 53 
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Northwest Territories, paleolimnology 54 

1. Introduction 55 

Lake sediment accumulation rates vary across space and time (Lehman, 1975; Terasmaa, 56 

2011).  Characterization of the spatial trends in accumulation rate for a region and within 57 

a lake basin is valuable for sample site selection in paleolimnological studies, as it is 58 

often favorable to sample lakes with sufficiently high accumulation rates to achieve a 59 

desirable temporal resolution in the data.  Understanding the temporal variability and 60 

timing of major shifts in accumulation rate as well as the causes of major accumulation 61 

rate shifts for a region can be extremely valuable for deciding on levels in an age-depth 62 

model that would benefit from additional radiocarbon dates.  Such changes in 63 

accumulation rate can be used to better understand the limnological system of study and 64 

the impact of climate change on that system.  Moreover, there are many examples where 65 

changes in sediment accumulation rate have been linked to climatic change.  For 66 

example, in the Cathedral Mountains of British Columbia, the highest Holocene levels of 67 

sediment yield are coincident with late Holocene (~ 4,000 BP) climate cooling, reduced 68 

catchment vegetation and increased terrestrial erosion (Evans and Slaymaker, 2004).  69 

Similarly, in a crater lake in equatorial East Africa, Blaauw et al. (2011) found that cooler 70 

climate conditions also resulted in reduced vegetation cover and increased terrestrial 71 

erosion and allochtonous sediment input into the lake.  Knowledge of accumulation rate 72 

is also necessary for proxy-based reconstructions of mean fire return interval, rates of 73 

vegetation change (Koff et al., 2000; Marlon et al., 2006), and carbon accumulation rate 74 

studies (e.g. Charman et al. 2013), for example, that are only as good as the chronologies 75 

they are based upon. 76 
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 77 

The integration of sediment accumulation rate information into Bayesian age-depth 78 

models as prior knowledge, or “priors” is particularly important for sections of an age-79 

depth model where the behavior of the model is uncertain (e.g. sparse data, age reversals, 80 

age offsets, dates within a radiocarbon plateau).  It can be a challenge, however, to 81 

estimate the accumulation rate prior.  Goring et al. (2012) provided a summary of 82 

sediment accumulation rates from 152 lacustrine sites in the northeastern US/southeastern 83 

Canada region and found that, in general, sediment accumulated with a DT of around 20 84 

yr/cm.  This result is fairly similar to the previous findings of Webb and Webb (1988; 10 85 

yr/cm) for the same region.  However, these estimates are too rapid for subarctic and 86 

arctic lakes, where a short ice-free season and low availability of organic material relative 87 

to more southern sites lead to slow annual sediment accumulation rates (e.g. Saulnier-88 

Talbot et al., 2009).   89 

 90 

This paper expands upon the temperate lake research of Goring et al. (2012) and Webb 91 

and Webb (1988).  We examine Holocene accumulation rate data for 22 lacustrine sites 92 

from a latitudinal gradient spanning boreal forest, treeline, and tundra settings in the 93 

Northwest Territories, Canada.  While this is a much smaller dataset than Webb and 94 

Webb (1988) and Goring et al. (2012), it is significant given that it is logistically difficult 95 

to obtain sediment records in arctic and subarctic regions due to the lack of infrastructure.  96 

Goring et al. (2012) suggest that such regional datasets can provide important prior 97 

knowledge to inform Bayesian (and other) age models.  98 

 99 
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The age-depth models presented in this paper were constructed in support of an 100 

interdisciplinary project aimed at better understanding the natural variability of climate 101 

along the routed of the Tibbitt to Contowyto Winter Road (TCWR) in the central 102 

Northwest Territories (Canada).  Increased precision of age-depth models and increased 103 

sampling resolution of proxy data from lake sediment cores have permitted higher 104 

resolution characterization paleoclimate patterns (e.g., Galloway et al., 2010; Macumber 105 

et al., 2012; Upiter et al., 2014).  106 

 107 

2. Regional setting 108 

Lakes investigated in this study are located in the central Northwest Territories (Fig. 1) in 109 

an area underlain by a portion of the Canadian Shield known as the Slave Craton.  This 110 

section of Archean crust is characterized by a depositional and volcanic history that has 111 

been overprinted by multiple phases of deformation and intruded by granitoid plutons 112 

(Bleeker, 2002).  Major rock units include basement gneisses and metavolcanics, 113 

metasedimentary rocks, and widespread gneissic–granitoid plutons (Padgham and Fyson, 114 

1992; Helmstaedt, 2009).  This bedrock geology lacks carbon-rich rocks such as 115 

limestones or marl, and is unlikely to be a source of ‘14C dead’ carbon, which can cause 116 

radiocarbon dates to appear anomalously old.   117 
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 118 

Figure 1. Map of the Northwest Territories showing the locations of core sites.  Circles 119 

are sites from the TCWR project, squares are sites from previously published work, 120 

dashed lines show current boundaries between tundra, forest tundra, and boreal forest 121 

ecozones, and the inset shows the location of the study area within Canada.  References 122 

for the previously published sites are given in Table 1.  Two column image. 123 

 124 

The Slave Craton has been isostatically uplifting since the retreat of the Laurentide 125 

Glacier about 10,000–9,000 years ago (Dyke and Prest, 1987; Dyke et al., 2003).  126 

Glacial-erosional processes have shaped the terrain, which is characterized by a gentle 127 

relief of only a few tens of meters (Rampton, 2000).  Where bedrock is not exposed, it 128 

lies beneath deposits of till and glaciofluvial sediment of varying thickness.  The action 129 
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of glacial erosion and subglacial meltwater flow has resulted in a landscape with 130 

abundant, often interconnected lakes.  Figure 1 shows the approximate western margin of 131 

the Laurentide Ice Sheet as it retreated toward the east, sometime between 10,500 and 132 

9900 years ago (Dyke and Prest, 1987) as well as the maximum extent of proglacial Lake 133 

McConnell (Smith, 1994).  Lake McConnell was the main proglacial lake in the region 134 

following the retreat of the Laurentide Ice Sheet.   135 

 136 

The present-day treeline runs NW/SE across the study area, roughly reflecting the polar 137 

front (Fig. 1).  The treeline is marked by the northern limits of the boreal forest (Fig. 2a), 138 

where forest stands are open and lichen woodlands merge into areas of shrub tundra 139 

(Galloway et al., 2010; Fig. 2b).  Soils are poorly developed with discontinuous 140 

permafrost south of the treeline, and continuous permafrost north of the treeline (Clayton 141 

et al., 1977).  Tundra vegetation is composed of lichens, mosses, sedges, grasses, and 142 

diverse herbs (MacDonald et al., 2009).  The vegetation cover and soils are often affected 143 

by polygonal permafrost features (Fig. 2c), and are discontinuous on rocky substrates.   144 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 8

 145 

Figure 2. Images of the (a) boreal forest zone at Waite Lake, (b) forest tundra ecotone 146 

near Portage Lake North (actually Mackay Lake, not mentioned in this paper), and (c) 147 

tundra zone at Carleton Lake, where “p” shows an area with soil polygon development.   148 

At Carleton Lake, the path of the TCWR can be seen exiting the lake to the north.  One 149 

column image. Colour version for web only. Black and white for print. 150 

 151 

The climate of the region is subarctic continental, characterized by short summers and 152 

long cold winters.  Annual precipitation is low (175 – 200 mm) and mean daily January 153 

temperatures range from -17.5°C to -27.5°C, while mean daily July temperatures range 154 

from 7.5°C to 17.5°C.  Lakes in the region are often ice-covered for much of the year, 155 

with an average open-water period of only 90 days (Wedel et al., 1990).   156 

 157 
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Broad-scale patterns of Holocene climate change in the study area have been identified 158 

by proxy evidence from lake sediment cores from Toronto Lake (MacDonald et al., 1993; 159 

Wolfe et al., 1996; Pienitz et al., 1999), Waterloo Lake (MacDonald et al., 1993), Lake 160 

S41 (MacDonald et al., 2009), Queen’s Lake (Moser and MacDonald, 1990; MacDonald 161 

et al., 1993; Wolfe et al., 1996; Pienitz et al., 1999), McMaster Lake (Moser and 162 

MacDonald 1990; MacDonald et al., 1993), UCLA Lake (Huang et al., 2004), Slipper 163 

Lake (Rühland and Smol, 2005), and Lake TK-2 (Paul et al., 2010) (Fig. 1; Table 1).  164 

Based on this body of previous work, three main stages of landscape development have 165 

been inferred: (1) between deglaciation (c. 9,000 cal BP) and c. 6,000 cal BP, terrestrial 166 

erosion decreased as vegetation developed from tundra to Betula-dominated shrub tundra, 167 

and finally to spruce forest tundra (Huang et al., 2004; Sulphur et al., in prep) and 168 

stabilized the landscape; (2) between c. 6,000 and c. 3,500 cal BP the treeline moved 169 

north of its present location in response to climate warming (Moser and MacDonald, 170 

1990; MacDonald et al., 1993), likely reflecting a northward retreat of the polar front 171 

following the demise of the ice sheet in the middle Holocene (Huang et al., 2004); and (3) 172 

between c. 3,000 cal BP to the present, there was a general trend towards climate cooling.  173 

This resulted in an increase in birch-dominated shrub tundra in the more northerly sites 174 

(UCLA lake; Huang et al., 2004).  At the more southern locations, vegetation shifts 175 

associated with climate change during the latest Holocene are also documented (change 176 

c. 1,000 cal BP at Danny’s Lake; Sulphur et al., in prep.). 177 

 178 

Table 1. Coordinates and physical characteristics of the lakes used in this study. 179 

Citations: (1) Moser and MacDonald, 1990; (2) MacDonald et al., 1993; (3) Edwards et 180 
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al., 1996; (4) Wolfe et al., 1996; (5) Penitz et al., 1999; (6) Huang et al., 2004; (7) 181 

Rühland and Smol, 2005; (8) MacDonald et al., 2009; (9) Paul et al., 2010; (10) 182 

Galloway et al., 2010; (11) Macumber et al., 2012; (12) Upiter et al., 2014. 183 

*TCWR JV = Tibbitt to Contwoyto Winter Road Joint Venture  184 

Site 
ID 

Site name TCWR 
JV* ID 

Latitude Longitude Surface 
area (ha) 

Depth 
(m) 

Citation 

1 Pocket Lake - 62°30.540  114°22.314 6 3.5  
2 Tibbitt Lake P0 62°32.800  113°21.530  300 6.72 10, 11 
3 Waite Lake P14-2 62°50.987  113°19.643 100 1.8 10, 11 
4 Bridge Lake P26 63°23.297  112°51.768 119.5 4.5 11 
5 Danny's Lake P34 63°28.547  112°32.250 4.4 4.4 11 
6 Lake P39 P39 63°35.105  112°18.436 37.3 1.1 11 
7 Toronto Lake - 63°25.800  109°12.600 10 6.75 2, 4, 5 
8 Portage Lake N P47 63°44.538  111°12.957 194.9 4.85 11 
9 Waterloo Lake - 63°26.400  108°03.600 ? ? 2 
10 Lake S41 - 63°43.110  109°19.070 <0.3 4.4 8 
11 Queens Lake - 64°07.000  110°34.000 50 4.5 1–5 
12 McMaster Lake - 64°08.000  110°35.000 12 8.0? 1, 2 
13 UCLA Lake - 64°09.000  107°49.000 28 7.7 6 
14 Carleton-1A P49 64°15.571  110°05.878 29.8 15 11 
15 Carleton-1B P49 64°15.571  110°05.878 29.8 1.5 11, 12 
16 Carleton-2012 P49 64°15.500  110°05.928 29.8 3.0  
17 Horseshoe Lake P52 64°17.381  110°03.701 505 4.0 11 
18 Lac de Gras P55 64°25.794  110°08.168 ~57 k 4.0 11 
19 Lac de Gras_DM1 P55 64°30.393  110°15.255 ~57 k ?  
20 Lac de Gras_DM3 P55 64°33.723  110°26.841 ~57 k ?  
21 Slipper Lake - 64°37.000  110°50.000 190 14.0 7 
22 Lake TK-2 - 66°20.900  104°56.750 2.8 7.5? 9 

 185 

3. Materials and methods 186 

3.1 Core collection 187 

The coordinates of each lake, as well as basic lake parameters (surface area, core depth, 188 

inlets/outlets) for each site and the relevant references are summarized in Table 1.  Data 189 

from eight previously published paleolimnological studies located in the area have been 190 

incorporated into the dataset to improve perspective on regional trends.  The sediment 191 

cores from these studies were collected using a modified Livingstone corer (Wright et al., 192 

1984), except the Slipper Lake core, which was collected using a modified KB gravity 193 
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corer and a mini-Glew gravity corer (Glew, 1991; Glew et al., 2001).   194 

 195 

Sampling sites were distributed across the boreal forest, forest-tundra, and tundra 196 

ecozones.  Coring typically took place during the winter when equipment could be set up 197 

directly on the TCWR, thus limiting sites to lakes with winter road access.  Water depth 198 

was measured in the field using a fish finder (echo sounder).  For five lakes, detailed 199 

bathymetric profiles were provided by EBA Engineering Consultants Ltd.  These profiles 200 

were collected during a through-ice bathymetry survey using ground-penetrating radar 201 

(GPR) towed behind a vehicle.   202 

 203 

The 14 new cores were collected using 1.5-2.0 m long, 10-20 cm wide, freeze corers 204 

(hollow, metal-faced corers filled with dry ice; Galloway et al., 2010; Macumber et al., 205 

2012).  Freeze corers are ideal for the extraction of cores in unconsolidated and water-206 

saturated sediment as they capture sediment by in situ freezing (Lotter et al., 1997; Glew 207 

et al., 2001; Kulbe and Niederreiter, 2003; Blass et al., 2007).  In 2009, Tibbitt and Waite 208 

lakes were cored using a single-sided freeze corer (Galloway et al., 2010).  The 209 

uppermost sediments from the Waite Lake coring site were unfortunately not recovered 210 

as the freeze corer over-penetrated the sediment-water interface during sampling.  A 211 

Glew core (Glew, 1991) was collected in 2011 in an attempt to capture the missing 212 

sediment-water interface.  In 2010 a custom designed double-sided freeze corer was 213 

deployed in addition to the single-faced corer, to increase the volume of sediment 214 

obtained at a given site (Macumber et al., 2012).  Freeze cores were sliced at millimeter-215 

scale resolution using a custom designed sledge microtome (Macumber et al., 2011).  The 216 
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highest sampling resolution previously reported previously reported for the region had 217 

been half-centimeter intervals from the Slipper Lake (Rühland and Smol, 2005) and Lake 218 

S41 cores (MacDonald et al., 2009).  219 

 220 

3.2 Chronology  221 

With the exception of one twig date in each of the Waite Lake and Queen’s Lake cores, 222 

and four twig dates in the Lake TK-2 core, radiocarbon dates were obtained from bulk 223 

sediment samples, as macrofossils were not encountered during screening.  Samples were 224 

pretreated with a standard acid wash to remove carbonate material, and unless otherwise 225 

stated in Section 4, analyses were performed using the accelerator mass spectrometer 226 

(AMS) at the 14Chrono Dating Laboratory at Queen’s University Belfast. Radiocarbon 227 

dates reported from previous work employed both conventional and AMS techniques.  228 

All radiocarbon ages in were calibrated using either Clam (Blaauw, 2010) or Calib 229 

software version 6.1.0 (Stuiver and Reimer, 1993); both programs used the IntCal09 230 

calibration curve (Reimer et al., 2009).  Radiocarbon ages younger than AD1950 were 231 

calibrated in CALIBomb (Reimer et al., 2004) with the NH_zone1.14c dataset (Hua and 232 

Barbetti, 2004).  For the Holocene dates used in this study, the differences between the 233 

IntCal09 and IntCal13 (Reimer et al., 2013) calibration curves, as well as between the 234 

2004 and 2013 (Hua et al., 2013) postbomb curves are negligible (for our purposes), but 235 

we would recommend using the newest curves in future studies.  Dates from a 210Pb 236 

profile from Slipper Lake were also incorporated into the dataset (Rühland and Smol, 237 

2005).  The Pocket Lake core contains a visible tephra layer, which was geochemically 238 

confirmed to as part of the White River Ash deposit (Crann et al., in prep).  This horizon 239 
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will be used in future studies to further constrain the age-depth model.  The core from 240 

nearby Bridge Lake was analyzed for both visible and cryptotephra, but was unsuccessful 241 

in finding evidence for deposition of the White River Ash. 242 

  243 

3.3 Classical age-depth modeling with Clam 244 

Smooth spline age-depth models were constructed for sediment cores obtained from the 245 

TCWR and previously published studies using the ‘classical’ age-depth modeling 246 

software Clam (Blaauw, 2010, R statistical software package) and the IntCal09 247 

calibration curve (Reimer et al., 2009).  The year the core was collected was added as the 248 

age of the sediment-water interface with an error of ±5 years.  The smoothing parameter, 249 

which controls how sharply the model will curve toward radiocarbon dates, was 250 

increased from the default value of 0.3 to 0.7 for the Danny’s Lake model and to 0.5 for 251 

the Waite Lake model in order to increase smoothness of the models through the large 252 

number of radiocarbon dates.  Otherwise, Clam’s default smoothing parameter of 0.3 was 253 

employed.  The core from Lake P39 had only three non-outlying (see next paragraph) 254 

dated horizons so the model was constructed using a linear regression.  For Slipper Lake, 255 

the three uppermost non-interpolated 210Pb dates were included in the model.   256 

 257 

For cores with low dating resolution (typically less than five radiocarbon dates or less 258 

than one radiocarbon date per thousand years), suspected outliers were removed on an ad 259 

hoc basis when a radiocarbon date either created a clear age reversal in the model or an 260 

anomalous shift in accumulation rate that could not be supported by sedimentological 261 

evidence (visible colour change from grey clay to dark green-brown sediment).  We also 262 
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took into account the regional trends in sediment accumulation rate to aid with outlier 263 

identification.  For example, many age-depth models show a pronounced decrease in 264 

accumulation rate after about 6,000 or 5,000 cal BP.   265 

 266 

The Danny’s Lake core is 115 cm long and has a few age reversals among the 25-267 

radiocarbon dates.  A Bayesian outlier analysis was performed using the general outlier 268 

model (Bronk Ramsey, 2009a) on a sequence in OxCal version 4.1 (Bronk Ramsey, 269 

2009b).  This model assumes that the dates are ordered chronologically (dates further 270 

down having older ages) and that outliers are in the calendar time dimension and 271 

distributed according to a Student-t distribution with 5 degrees of freedom (Christen, 272 

1994; Bronk Ramsey, 2009a).  Each radiocarbon date was assigned a 5% prior 273 

probability of being an outlier.  The first outlier analysis identified all three dates at the 274 

bottom of the core as outliers so we increased the prior probability of UBA-16439 to 275 

10%, as this date created the largest age reversal.  A subsequent outlier analysis still 276 

identified the two bottommost dates as outliers and it was unclear as to which was more 277 

likely to be an outlier.  We then examined the age-depth models from other lakes and 278 

from previous studies for clues to resolve this problem.  As many of the other models 279 

support a higher accumulation rate prior to about 6000 cal BP we used this information to 280 

increase the prior probability of UBA-17932 being an outlier to 10%.  In Section 5, we 281 

show how the Bayesian software Bacon produces age models without performing a 282 

separate, formal outlier analysis.  283 

 284 

3.4 Estimation of deposition time (DT) 285 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 15

An estimate of DT (yr/cm, inverse of accumulation rate) is required as a priori 286 

information to generate age-depth models using the Bayesian software Bacon (Blaauw 287 

and Christen, 2011).  This estimate can be based on prior knowledge obtained from 288 

previously built age-depth models from lakes in the region (Goring et al., 2012).  Here we 289 

generate a summary for the region using the age-depth models constructed in Clam to 290 

calculate the DT at 100-year intervals for each model.  It should be noted that the 291 

intention of the summary is to produce initial estimates of DT for age-depth modeling 292 

and the data has not undergone a rigorous statistical analysis.  The DT between the 293 

uppermost non-outlying date and the date used to model the surface age were not 294 

included in graphing the accumulation rates because: (1) there is potential uncertainty 295 

with the assumption that the age of the sediment-water interface is indeed the year that 296 

the core was collected; and (2) high water content in the uppermost sediments can lead to 297 

an anomalously rapid DT.  Webb and Webb (1988) assumed 50% compaction in 298 

sediments below the uppermost 5 to 10 cm of the sediment column based on dry 299 

weight/wet weight ratios, yet they found that the accumulation rates were still higher 300 

during the historic period.  Because dry weight/wet weight data has not been collected for 301 

this study, the effect of compaction and dewatering is not taken into account in graphing 302 

the DT.  P39 and Slipper lake cores lacked sufficient chronological control and were 303 

omitted from the DT compilation dataset.   304 

 305 

4.  Results  306 

The radiocarbon dates from all sites included in this study, along with the results from the 307 

outlier analysis, are summarized in Table 2.  The age-depth models constructed using 308 
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Clam have been grouped into three categories (Fig. 3).  The first category, rapid sediment 309 

accumulation rate lakes, contains five age-depth models that stand out from the rest.  310 

Deposition times in this category do not tend to exceed 50 yr/cm, and the average DT 311 

(rounded to the nearest 10 = 20 yr/cm) is on par with lakes in the Great Lakes region 312 

(Goring et al., 2012).  The other two categories, moderate and slow sediment 313 

accumulation rate lakes, are not so easily distinguished.  Accumulation rates for age-314 

depth models in both categories fluctuate, but moderate sediment-rate accumulating sites 315 

tend to fluctuate at more subtle amplitudes (DT of around 50 yr/cm) and do not often 316 

exceed a DT of 100 yr/cm.  Sites with overall slow accumulation rates fluctuate with DT 317 

amplitudes up to 150 yr/cm, and tend to be in excess of 100 yr/cm. 318 

 319 

Detailed results for each category are given in Sections 4.1-4.3.  Because these results are 320 

intended to yield insight into the spatial and temporal variability in accumulation rates in 321 

high latitude lakes and to give estimates of DT that can be used as prior information in 322 

Bayesian age-depth modeling with Bacon, DTs are rounded to the nearest 10 yr/cm.  323 

 324 

Table 2. Radiocarbon ages from all sites, calibrated with the IntCal09 calibration curve 325 

(Reimer et al., 2009) using either Calib software version 6.1.0 (Stuiver and Reimer, 1993) 326 

or Clam (Blaauw, 2010).  The radiocarbon ages younger than AD1950 (italics) were 327 

calibrated in CALIBomb (Reimer et al., 2004) with the NH_zone 1.14c dataset (Hua and 328 

Barbetti, 2004).  The year the core was collected is included as it was used to model the 329 

age of the sediment-water interface in the Clam age-depth models.  Dates identified as 330 

outliers are shown in bold and radiocarbon dates younger than AD1950 are in italics.  331 
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Lake information Lab ID Method 
Depth 
(cm) 

14C age (BP) 
± 1σ  

Material 
dated 

Cal BP  ± 
2σ 

Pocket Lake  UBA-20676 AMS 10–10.5   362 ± 27 Bulk    310–414 

collected in 2012  UBA-22350 AMS 20–20.5   731 ± 31 Bulk    653–727 

Freeze core (2F_F1) UBA-20679 AMS 52–52.5 1335 ± 25 Bulk  1286–1383 

  UBA-22351 AMS 57–57.5 1394 ± 30 Bulk  1279–1348 

  UBA-22352 AMS 70–70.5 1725 ± 31 Bulk  1556–1708 

  UBA-20677 AMS 90–90.5 2501 ± 30 Bulk  2443–2559 

  UBA-22353 AMS 110–110.5 1516 ± 35 Bulk  1333–1518 
  UBA-20678 AMS 128.5–129 2966 ± 26 Bulk  2916–3016 

Tibbitt Lake (P0) UBA-17353 AMS 20–21     67 ± 22 Bulk    (-4)–255 

collected in 2009 UBA-17354 AMS 40–41 1409 ± 20 Bulk  1292–1343  

Freeze core (1FR) UBA-17355 AMS 80–81 2046 ± 26 Bulk  1930–2111  

 Beta-257687 AMS 138–138.5 2390 ± 40 Bulk  2338–2696  

Waite Lake (P14-2) UBA-18968 AMS 17–17.5 1.0562 ± 0.003 Bulk  AD1956–1957 

collected in 2010 UBA-18969 AMS 27–27.5   309 ± 22 Bulk    304–455  

Glew core UBA-18970 AMS 37–37.5   556 ± 26 Bulk    522–637 

Waite Lake (P14-2) UBA-18474 AMS 0 1084 ± 41 Bulk    927–1066  

collected in 2009 UBA-16433 AMS 16.9   995 ± 24 Bulk    800–961 

Freeze core (1FR) UBA-16434 AMS 29.1 1129 ± 22 Bulk    965–1076  

 UBA-16435 AMS 43.2 1455 ± 23 Bulk  1304–1384  

 UBA-16436 AMS 57.8 1519 ± 22 Bulk  1345–1514 

 Beta-257686 AMS 66.3 1520 ± 40 Bulk  1333–1520  

 UBA-15638 AMS 109.7 2107 ± 29 Twig 1997–2149  

 Beta-257688 AMS 154 2580 ± 40 Bulk  2498–2769 

 Beta-257689 AMS 185 2920 ± 40 Bulk  2955–3210  

 Beta-257690 AMS 205.1 3460 ± 40 Bulk  3633–3838  

Bridge Lake (P26-1) UBA-18964 AMS 6.5–7     28 ± 23 Bulk    (-4)–244 

collected in 2010 UBA-22873 AMS 12.5–13   694 ± 26 Bulk    565–683 

Freeze core (2F_F2) UBA-18965 AMS 18–18.5 1883 ± 23 Bulk  1736–1882 

  UBA-22874 AMS 24.5–25 3782 ± 30 Bulk  4082–4246 

  UBA-22875 AMS 30.5–31 4730 ± 30 Bulk  5326–5583 

  UBA-22876 AMS 34.5–35 5487 ± 31 Bulk  6210–6322 

  UBA-18966 AMS 41.5–42 5816 ± 42 Bulk  6501–6727  

  UBA-22877 AMS 50.5–51 6184 ± 32 Bulk  6977–7172 

  UBA-18967 AMS 59.5–60 6762 ± 32 Bulk  7576–7667  

  UBA-22878 AMS 64–64.5 7025 ± 34 Bulk  7788–7941 

Danny's Lake (P34-2) UBA-17359 AMS 5.7   693 ± 21 Bulk    567–679 

collected in 2010 UBA-17360 AMS 10.2   855 ± 23 Bulk    695–795  

Freeze core (2F_F2) UBA-16543 AMS 15–15.5 1329 ± 23 Bulk  1184–1299 

 UBA-17361 AMS 21.9 1617 ± 25 Bulk  1416–1556  

 UBA-17431 AMS 27.8 1659 ± 21 Bulk  1521–1615  

 UBA-16544 AMS 32.6 1916 ± 25 Bulk  1818–1904  

 UBA-20377 AMS 33.5 2071 ± 24 Bulk  1987–2120  

 UBA-20378 AMS 34.2 2159 ± 24 Bulk  2061–2305 

 UBA-17929 AMS 34.5 2257 ± 26 Bulk  2158–2343 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 18

Lake information Lab ID Method 
Depth 
(cm) 

14C age (BP) 
± 1σ  

Material 
dated 

Cal BP  ± 
2σ 

 UBA-20376 AMS 35.3 2073 ± 28 Bulk  1986–2124  
 UBA-20375 AMS 36.8 2248 ± 25 Bulk  2158–2339 

 UBA-17432 AMS 37.6 2659 ± 32 Bulk  2742–2884 
 UBA-20374 AMS 38.4 2392 ± 25 Bulk  2345–2488  

 UBA-20373 AMS 39.3 2448 ± 33 Bulk  2358–2702 

 UBA-17930 AMS 40.4 2549 ± 26 Bulk  2503–2748 

 UBA-20371 AMS 41.4 2554 ± 28 Bulk  2503–2750 

 UBA-20372 AMS 43.3 4863 ± 29 Bulk  5583–5652  
 UBA-16545 AMS 45–45.5 2912 ± 24 Bulk  2964–3157 

 UBA-16546 AMS 56.9 3604 ± 25 Bulk  3845–3975  

 UBA-16547 AMS 70.1 5039 ± 51 Bulk  5661–5903 

 UBA-16548 AMS 85–85.5 5834 ± 29 Bulk  6560–6733  

 UBA-17931 AMS 89.5 6231 ± 34 Bulk  7016–7253 

 UBA-16439 AMS 95.5 8112 ± 32 Bulk  8997–9125  
 UBA-17932 AMS 99.1 7623 ± 38 Bulk  8370–8518 
 UBA-16440 AMS 113.6 7450 ± 30 Bulk  8191–8346  

P39-1A UBA-17344 AMS 10–10.5 3597 ± 26 Bulk  3840–3973  
collected in 2010 UBA-17345 AMS 19–19.5 3701 ± 24 Bulk  3974–4144 

Freeze core (2F_F1) UBA-17346 AMS 29–29.5 5385 ± 35 Bulk  6018–6284 

Toronto Lake Beta-49705 conv. 35–50 1760 ± 90 Bulk  1421–1887 

collected in 1987 Beta-53129 conv. 80–85 4200 ± 80 Bulk 4450–4956 

Livingstone core Beta-53130 conv. 125–130 5460 ± 90 Bulk 6001–6408 

 Beta-49708 conv. 155–160 7040 ± 120 Bulk  7657–8155 

Portage Lake N. (P47-1) UBA-17933 AMS 6.5–7   772 ± 24 Bulk    673–729  

collected in 2010 UBA-17159 AMS 13.5–14 4218 ± 38 Bulk  4626–4854 

Freeze core (2F_F2) UBA-17160 AMS 41–41.5 4885 ± 37 Bulk  5584–5710 
  UBA-17161 AMS 63–63.5 5333 ± 35 Bulk  5997–6264 

  UBA-17162 AMS 86.5–87 5878 ± 34 Bulk  6637–6783 

Waterloo Lake TO-3312 AMS 28–31 4030 ± 50 Bulk  4413–4801 
collected in 1987? TO-3311 AMS 54–56 4640 ± 50 Bulk  5090–5577 

Livingstone core TO-3310 AMS 61–63.5 5300 ± 50 Bulk  5939–6257 

 TO-3313 AMS 75–77 7640 ± 100 Moss 8206–8627 

Lake S41 UCI-25833 AMS 7–7.5   375 ± 15 Bulk    331–499 

collected in 2005 UCI-25841 AMS 13.4–14 1045 ± 20 Bulk    926–1042 

Livingstone core UCI-25836 AMS 23–23.5 1985 ± 15 Bulk  1892–1987 

  UCI-25835 AMS 32.5–33 2765 ± 20 Bulk  2789–2924 

Queen's Lake WAT-1770 conv. 15–20 3820 ± 60 Bulk  4010–4414 

collected in 1987? WAT-1771 conv. 45–50 5600 ± 60 Bulk  6291–6493 

Livingstone core WAT-1772 conv. 60–65 6150 ± 60 Bulk  6888–7241 

 WAT-1773 conv. 100–105 7150 ± 70 Bulk  7842–8159 

 TO-827 AMS 105 7470 ± 80 Twig 8060–8417 

McMaster Lake TO-766 AMS 10–12 3690 ± 50 Bulk  3888–4212 
collected in 1987? TO-158 AMS 20–22 3680 ± 60 Bulk  3849–4220 

Livingstone core TO-767 AMS 30–32 5120 ± 60 Bulk  5730–5990 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 19

Lake information Lab ID Method 
Depth 
(cm) 

14C age (BP) 
± 1σ  

Material 
dated 

Cal BP  ± 
2σ 

  TO-156 AMS 40–42 5360 ± 60 Bulk  5998–6279 

  TO-154 AMS 60–62 6180 ± 60 Bulk  6943–7248 

UCLA Lake TO-8840 AMS 20–21 2370 ± 50 Bulk  2319–2698 

Livingstone core TO-8842 AMS 35–35.5 4130 ± 50 Bulk  4527–4824 

 TO-8844 AMS 45–45.5 5680 ± 70 Bulk  6317–6635 

 TO-8845 AMS 50–50.5 6280 ± 70 Bulk  7002–7413 

 TO-8846 AMS 55.5–56 7040 ± 70 Bulk  7707–7978 

 TO-8847 AMS 64.5–65 7680 ± 70 Bulk  8382–8590 

 TO-8848 AMS 69.5–70 7960 ± 80 Bulk  8605–9006 

Carleton Lake (P49-1A) UBA-19464 AMS 9.5–10 2794 ± 34 Bulk  2791–2970  
collected in 2010 UBA-20002 AMS 15–15.5 2778 ± 26 Bulk  2793–2950 
Freeze core (2F_F2) UBA-20003 AMS 25–25.5 2716 ± 33 Bulk  2757–2868  

  UBA-19465 AMS 32.5–33 3124 ± 41 Bulk  3254–3443  
  UBA-19466 AMS 40.5–41 3616 ± 37 Bulk  3835–4075 
  UBA-19467 AMS 66.5–67 4927 ± 38 Bulk  5594–5728  
Carleton Lake (P49-1B) UBA-18472 AMS 0–0.5 1.0264 ± 0.0035 Bulk  AD1955-1957 

collected in 2010 UBA-17934 AMS 10–10.5 1046 ± 24 Bulk    925–983  
Freeze core (1F) UBA-17347 AMS 19.5–20 1925 ± 25 Bulk  1822–1926  
 UBA-17935 AMS 40–40.5 2762 ± 35 Bulk  2780–2946  
 UBA-17348 AMS 64.5–65 3675 ± 24 Bulk  3926–4087 
 UBA-17936 AMS 80–80.5 4635 ± 32 Bulk  5304–5465 
 UBA-17349 AMS 100–100.5 5663 ± 26 Bulk  6399–6497  
Carleton Lake (R12-P49) UBA-20612 AMS 10.0   702 ± 39 Bulk    560–699 
collected in 2012 UBA-20613 AMS 36.2 1337 ± 31 Bulk  1181–1305 
Freeze core (2F_F2) UBA-20614 AMS 55.3 1302 ± 46 Bulk  1132–1304 
  UBA-20615 AMS 81.5 2132 ± 31 Bulk  2002–2299 
  UBA-20616 AMS 117.8 2944 ± 32 Bulk  2989–3216 
Horseshoe Lake (P52-1) UBA-17350 AMS 9–9.5   178 ± 25 Bulk    (-2)–291 
collected in 2010 UBA-17163 AMS 18–18.5 1148 ± 42 Bulk    967–1172  

Freeze core (2F_F2) UBA-17351 AMS 28–28.5 2763 ± 22 Bulk  2785–2924 

 UBA-17352 AMS 38–38.5 3343 ± 23 Bulk  3481–3639 

 UBA-19973 AMS 43.2 3776 ± 36 Bulk  3992–4281 

 UBA-17938 AMS 46–46.5 4885 ± 27 Bulk  5589–5653  

 UBA-17165 AMS 55–55.5 5916 ± 58 Bulk  6628–6897  

 UBA-17937 AMS 68–68.5 6723 ± 29 Bulk  7516–7656 

 UBA-17166 AMS 80–80.5 7488 ± 40 Bulk  8199–8383 

 UBA-17167 AMS 106–106.5 8011 ± 43 Bulk  8718–9014  

Lac de Gras (LDG) UBA-17939 AMS 12–12.5 1123 ± 23 Bulk    965–1067  

collected in 2010 UBA-17356 AMS 19–19.5 3299 ± 38 Bulk  3447–3631  
Freeze core (2F_F2) UBA-17357 AMS 32–32.5 1607 ± 29 Bulk  1412–1551  

  UBA-17358 AMS 46–46.5 2144 ± 35 Bulk  2003–2305 

Lac de Gras (LDG_DM1) D-AMS 001550 AMS 10–11   784 ± 23 Bulk  677–732 

collected in 2012 D-AMS 001551 AMS 20–21 1797 ± 23 Bulk  1629–1817 

Freeze core D-AMS 001552 AMS 30–31 2636 ± 25 Bulk  2738–2781 

 D-AMS 001553 AMS 40–41 3590 ± 27 Bulk  3836–3972 

Lac de Gras (LDG_DM3) D-AMS 001554 AMS 10–11 1719 ± 23 Bulk  1561–1696 
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Lake information Lab ID Method 
Depth 
(cm) 

14C age (BP) 
± 1σ  

Material 
dated 

Cal BP  ± 
2σ 

collected in 2012 D-AMS 001555 AMS 20–21 3459 ± 26 Bulk  3642–3828 

 Freeze core D-AMS 001556 AMS 30–31 5509 ± 28 Bulk  6223–6396 

  D-AMS 001557 AMS 40–41 7827 ± 31 Bulk  8543–8696 

Slipper Lake 210PB Age n/a 0 n/a Bulk  (-49)–(-45) 

collected in 1997 210PB Age n/a 2 n/a Bulk        6–20 

KB gravity and mini-Glew 210PB Age n/a 3 n/a Bulk      34–94 

 TO-9671 AMS 21.5–22.5 3270 ± 80 Bulk  3359–3688 

 TO-9672 AMS 43.5–44.5 4760 ± 70 Bulk  5321–5603 

Lake TK-2 Beta-167871 AMS 32–34 2480 ± 40 Bulk  2365–2718 

collected in 1996 Beta-167872 AMS 60–62 3870 ± 40 Bulk  4157–4416 

Livingstone core Beta-167873 AMS 96–98 5670 ± 40 Bulk  6322–6558 

  TO-7871 AMS 132 7370 ± 80 Twigs 8020–8349 

  TO-7870 AMS 137 7190 ± 80 Twigs 7860–8178 

  TO-7869 AMS 142 7740 ± 90 Twigs 8375–8772 
  TO-7868 AMS 174 7780 ± 70 Twigs 8412–8761 

 332 

 333 

 334 

Figure 3. Age-depth models constructed using a smooth spline regression in Clam, 335 

grouped into (a) rapid, (b) moderate, and (c) slowly accumulating sites.  The 95% 336 

confidence interval is light grey.  The scale for Waite Lake is to be used as a relative 337 

measure only as the freeze corer over-penetrated the sediment-water interface.  Two 338 
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column image. 339 

 340 

4.1 Sites with rapid accumulation rates (DT<50 yr/cm) 341 

Rapid sediment accumulation rates are defined as having the DT for the majority of the 342 

core of less than 50 yr/cm.  Five distinctive age depth models belonging to this category 343 

were produced for cores from Lac de Gras, Pocket, Tibbitt, Waite and Carleton lakes.  344 

Due to rapid sediment accumulation rates, these core records tend to span ~3,500 years at 345 

most.  The cores in this category yielded internally consistent age-depth models, with the 346 

exception of one radiocarbon date that is a clear outlier in the Lac de Gras core (Table 2). 347 

The average DT (rounded to the nearest 10 = 20 yr/cm) is on par with lakes in the Great 348 

Lakes region (Goring et al., 2012). 349 

 350 

Deposition times in these lakes vary between c. 10 and 50 yr/cm, with a mean of c. 20±10 351 

yr/cm (1σ) and a unimodal distribution, based on 107 DT measurements at 100-year 352 

intervals (Fig. 4a). The accumulation pattern for Tibbitt Lake is different from the others 353 

as it increases steadily from a DT of c. 5 yr/cm at c. 2,500 cal BP to c. 50 yr/cm at the 354 

top, but the very rapid deposition near the base overlaps the Hallstatt Plateau (c. 2,700-355 

2,300 cal BP; Blockley et al., 2007), which is a flat section in the IntCal09 calibration 356 

curve and therefore may be an artifact of calibration.   357 
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 358 

 359 

Figure 4. (a) Histogram of DT from rapid, moderate, and slowly accumulating lake site 360 

categories, sampled at 100-year intervals from the age-depth models constructed in clam.  361 

(b) Accumulation rate profiles for each site showing fluctuation of DT over time and the 362 

variability between lake sites.  The dots correspond to radiocarbon dates.  Two column 363 

image. Colour version for web only. Black and white for print. 364 

 365 

4.2 Sites with moderate accumulation rates (DT 50 – 100 yr/cm) 366 

The distinguishing characteristics of sites within this category include fluctuations in 367 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 23

sediment accumulation rate at relatively subtle amplitudes (DT around 50 yr/cm) and 368 

DTs that do not generally exceed 100 yr/cm.  The sites in this category are Danny’s, 369 

Toronto, S41, Carleton-1A, Carleton-1B, LDG_DM1, and TK-2.  Three of the cores in 370 

the moderate accumulation rate category are characterized by a sedimentary record that 371 

extends just beyond 8,000 cal BP.  The other four cores in this category have records that 372 

extend back between c. 6,000 and c. 4,000 cal BP (Fig. 3).   373 

 374 

The outlier analysis performed in OxCal identified five outliers in the Danny’s Lake core, 375 

which were omitted from the smooth spline age-depth model constructed with Clam.  376 

Four of the five outliers were older than the model and the fifth was only slightly 377 

younger.  For Carleton-1A, the upper three radiocarbon dates, at 9.5, 15 and 25 cm, all 378 

overlapped within the age range of c. 2,900 to c. 2,700 cal BP.  For this reason the 379 

uppermost two dates were omitted from the age-depth model constructed in Clam.  The 380 

overlap may have been the result of sediment mixing.  The core from Lake TK-2 has an 381 

age reversal within the bottommost four dates.  Because these dates were obtained from 382 

twigs (allochthonous origin and lack of heartwood), the reversal is likely due to delayed 383 

deposition of older organic material.  Clam was able to accept the reversal as the date was 384 

within error of the others. 385 

 386 

The lakes in this category accumulated with DTs between 50 and 100 yr/cm with a mean 387 

of c. 70±20 yr/cm (1σ) based on 343 DT measurements at 100-year intervals (Fig. 4).  388 

The histogram shown in figure 4a has a bimodal distribution with a primary mode around 389 

60 yr/cm and a secondary mode around 100 yr/cm.  Most of the lakes in this category 390 
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exhibit fluctuations in accumulation rate over time.   391 

 392 

4.3 Sites with slow accumulation rates (DT 100 – 250 yr/cm)  393 

Accumulation rates fluctuate in age-depth models for lakes with moderate and slow rates, 394 

producing some overlapping characteristics.  Sites with overall slow accumulation rates 395 

fluctuate with DT amplitudes up to 150 yr/cm that tend to exceed 100 yr/cm.  The sites in 396 

the slow accumulation category are Bridge, Waterloo, UCLA, Horseshoe, and 397 

LDG_DM3.  All five sites in this category extend back to at least c. 8000 cal BP or 398 

beyond.  The age-models are internally consistent, with only one outlier identified from 399 

the Waterloo Lake age-depth model, where the age is older than the model (Fig. 3). 400 

 401 

The histogram of DTs (Fig. 4a) is multi-modal, reflecting high variability of sediment 402 

accumulation rates for cores within this category.  The main pattern occurs between about 403 

8,000 and 5,000 cal BP, where Bridge, UCLA, and Horseshoe lakes are all characterized 404 

by a slowing of accumulation rate (increased DT).  This rate change is coincident with 405 

changes in sedimentation from minerogenic-rich at the base of the core to organic-rich 406 

above (Macumber et al., 2012).  For Bridge Lake, the accumulation rate slows steadily 407 

from a DT of ~50 yr/cm at 7,600 cal BP to c. 200 yr/cm at 4,000 cal BP.  This 408 

accumulation rate change is linked to a distinct color change at ~4,200 cal BP, from light 409 

grey below (Munsell code 5y 3/2) to brown (Munsell code 10yr 2/1) above (Macumber et 410 

al., 2012). The DT is constant around 200 yr/cm until c. 2,500 cal BP and steadily 411 

increases to c. 160 yr/cm by 100 cal BP.   412 

 413 

The accumulation rate profile for Horseshoe Lake displayed the highest variability of any 414 
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studied profile.  Modeled DT is high (c. 20 yr/cm) between 8,700 – 7,500 cal BP and then 415 

decrease to c. 225 yr/cm by 5,000 cal BP.  The transition around 7,500 cal BP is 416 

associated with a shift from minerogenic-rich sediment at the core bottom to organic-rich 417 

sediment above.  Stratigraphically above ~7,500 cal BP, the accumulation rate gradually 418 

increases; DT reaching c. 100 yr/cm by 3,000 cal BP, then decreasing to 150 yr/cm by 419 

2,000 cal BP, and finally increases again to 60 yr/cm at the core top.   420 

 421 

4.4 Sites with poor chronological constraint 422 

Some sites do not easily fit into the three recognized categories, either due to lack of 423 

dating resolution (P39 and Slipper lakes) or because the accumulation profile is 424 

characterized by a dramatic shift in accumulation rate (Portage North, Queens, and 425 

McMaster; Fig. 4).  P39, Portage North, and McMaster lakes all had one outlier – 426 

identified on an ad hoc basis – that fell between 5,000 and 4,000 cal BP (Fig. 3).  For 427 

P39, the radiocarbon date at the top of the core was determined to be an outlier.  Because 428 

the core was collected in only 110 cm water depth, upper lake sediments may have been 429 

disturbed due to freezing of ice to the sediment-water interface.  No further research was 430 

undertaken on this core and accumulation rates were not estimated.  Slipper Lake lacked 431 

sufficient chronological control (based on two 14C dates and a 210Pb profile) and was also 432 

omitted from calculations of accumulation rate.  433 

 434 

5. Bayesian age-depth modeling with Bacon 435 

The temporal and spatial variations identified above are used as prior information for 436 

three Bayesian age-depth models to demonstrate the power and robustness of this 437 
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approach.  The age modeling procedure for Bacon is similar to that outlined in Blaauw 438 

and Christen (2005), but more numerous and shorter sections are used to generate a more 439 

flexible chronology (Blaauw and Christen, 2011, 2013).  Radiocarbon age distributions 440 

are modeled using the Student-t distribution, which produces calibrated distributions with 441 

longer tails than obtained using the Normal model (Christen and Pérez, 2009).  Due to the 442 

longer tails on radiocarbon dates and a prior assumption of unidirectional sediment 443 

accumulation, in most cases excluding outliers is not necessary when using Bayesian age 444 

modeling.  The cores from Waite, Danny’s and Horseshoe lakes all have at least ten non-445 

outlying radiocarbon dates and were deemed suitable for Bayesian modeling with Bacon.   446 

 447 

As this is a demonstration of the practical application of Bacon (version 2.2; Blaauw and 448 

Christen, 2011, 2013), text in italics denotes the actual code typed in R (statistical 449 

computing and graphics software).  Bacon version 2.2 uses the currently most recent 450 

calibration curve, IntCal13 (Reimer et al., 2013), and has an added feature of plotting 451 

accumulation rate data with the plot.accrate.depth() and plot.accrate.age() functions.  In 452 

Section 6.3 we show a practical example of the accumulation rate plotting function. 453 

 454 

Memory or coherence in accumulation rates along the core is a parameter that is defined 455 

based on the degree to which the accumulation rate at each interval depends on the 456 

previous interval.  For example, the memory for modeling accumulation in peat 457 

sediments should be higher than for lacustrine sediments because accumulation of peat in 458 

peat bogs is less dynamic over time than the accumulation of sediments in a lake.  Here 459 

we used the memory properties from the lake example in Blaauw and Christen (2011; 460 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 27

mem.strength=20 and mem.mean=0.1).   461 

 462 

The accumulation rates (acc.rate=) for Waite and Danny’s lakes were based on the DT 463 

estimates from Section 4 (20, and 70, respectively). The accumulation shape 464 

(acc.shape=) for the Waite Lake cores was set to 2, as suggested by Blaauw and Christen 465 

(2011).  The accumulation shape controls how much influence the accumulation rate will 466 

have on the model.  The default value of 2 is fairly low, thus the model has a fair amount 467 

of freedom to adapt rates to what the data suggest.  For the Danny’s lake age model, the 468 

accumulation shape was increased to a value of 20 to avoid perturbations in the model 469 

caused by known outliers.  The step size for Waite Lake was set to 5 cm, which is the 470 

default for a lake (Blaauw and Christen, 2011).  The Danny’s lake age-depth model 471 

required more flexibility due to the observed shifts in accumulation rate that are unlikely 472 

to be the product of spurious radiocarbon ages (they are sustained changes coherent with 473 

known climate events), so the step sizes was lowered to 2 cm. 474 

 475 

Horseshoe Lake required the addition of a hiatus (hiatus.depths=45, hiatus.mean=10) in 476 

order to produce a realistic, stable model.  Because the hiatus accounts for the slowest 477 

accumulation rates for the age-depth model (>150 yr/cm between c. 6000 – 4000 cal BP), 478 

the portion of the model below the hiatus accumulates at moderate rate (acc.mean=70, 479 

acc.shape=2) and the portion of the model above the hiatus rate (acc.mean=20, 480 

acc.shape=1).  The physical nature of this hiatus is explored in Section 6.2.  481 

 482 

The resulting age-depth models are shown in Figure 5, along with plots that describe: (1) 483 
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the stability of the model (log objective vs. iteration); (2) the prior (entered by the user) 484 

and posterior (resulting) accumulation rate, and; (3) the prior and posterior memory 485 

properties.  The Bayesian model from Waite Lake shows stable accumulation rates over 486 

time, most likely because this core covers the latest Holocene, during which time climate 487 

was relatively consistent (Karst-Riddoch et al. 2005; Rühland & Smol 2005; Miller et al. 488 

2010).  Danny’s Lake also yielded a stable model, with the consideration that the weight 489 

on accumulation rate was set very high.  The Horseshoe Lake model ran fairly stable, 490 

with a minor perturbation. 491 

 492 

The prior and posterior probability diagrams for accumulation rate were fairly similar for 493 

Waite and Danny’s lakes, and for Horseshoe Lake, the posterior distribution for 494 

accumulation rate is a combination of the two assigned rates.  Waite and Danny’s lakes 495 

models both showed memory of around 0.25, which is higher than was assigned (0.1).  496 

The Horseshoe Lakes model had far less memory than assigned, but this is because 497 

memory falls to 0 across a hiatus.  498 
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 499 

 500 
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 501 

Figure 5. Bayesian age-depth models constructed with the age-depth modeling software 502 

Bacon for Waite, Danny’s, and Horseshoe lake cores.  The grayscale on the model 503 

represents the likelihood, where the darker the grey, the more likely the model is of 504 

running through that section.  The vertical, dashed line on the Horseshoe Lake model 505 

denotes a hiatus.  The bottom right panel shows three plots for each model: (left) stability 506 

of the model; (middle) prior (line) and posterior (filled) distributions of accumulation 507 

mean; and (right) prior (line) and posterior (filled) distributions of memory properties.  508 

Double column image. Colour version for web only. Black and white for print. 509 

 510 

6. Discussion 511 

6.1 Spatial variability in accumulation rates 512 
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The three southernmost boreal forest lakes (Pocket, Tibbitt, and Waite) have the highest 513 

accumulation rates, suggesting that the accumulation rate may be can be related to in-lake 514 

productivity and in-wash of organic detritus.  Sediment accumulation rates at Bridge and 515 

Danny’s lakes are slower than the more productive boreal lakes; Pocket, Tibbitt, and 516 

Waite lakes.  The last c. 3,000 years of accumulation at Danny’s lake mirrors the pattern 517 

of rapidly accumulating sites, but is slower by about a DT of 10-20 yr/cm.  This suggests 518 

that Danny’s lake responded similarly to climate as the southernmost lakes, but may 519 

either be slightly less productive due to colder temperatures at its location closer to the 520 

polar front, or, judging by the bathymetry (Fig. 6), the coring site itself may receive less 521 

sediment than the main basin of the lake, where sediment accumulation is most 522 

commonly the greatest (c.f. Lehman, 1975).  The accumulation rate at Bridge Lake is 523 

extremely slow for the location south of the treeline and again we look at the bathymetry 524 

for an explanation (Fig. 6).  The coring location for Bridge Lake is nestled into a steep 525 

slope, proximal to a deeper sub-basin with a much thicker sediment package.  The slope 526 

limits the amount of sediment that can accumulate at this site, and similarly to Danny’s 527 

Lake, much of the material is likely to have drifted toward the deeper basin.   528 

 529 

Two of the most rapidly accumulating lakes are located in the tundra (Carleton-2012 and 530 

Lac de Gras).  Examination of the bathymetry profiles reveals certain basin features that 531 

could explain the rapid accumulation rates (Fig. 6).  Carleton Lake has a shallow shelf 532 

over 500 m long that has a maximum depth of two meters, a slope covering less than 100 533 

m, and a main basin that is about 500 m long at a depth of about 4 m (Fig. 6).  The 534 

Carleton-2012 freeze core was collected from a site closer to the slope and shelf than the 535 
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Carleton-1A and Carleton-1B freeze cores.  The shelf, which is situated in two meters 536 

water depth, may be susceptible to re-suspension of fine detritus due to surface waves 537 

touching bottom generated during windy or stormy conditions.  The re-suspended 538 

sediments would be transported down into the basin, with the majority being deposited 539 

closer to the slope terminus.  A similar trend has been noted at two Lakes in Estonia 540 

whereby sediments deposited nearshore are thought to have eroded during a regressive 541 

period and redeposited elsewhere (Punning et al., 2007a, 2007b; Terasmaa, 2011).  542 

Looking at the bathymetry for Lac de Gras, it would be expected that since the coring site 543 

is steep, sediment would by-pass and be deposited in the deeper part of the lake.  It is 544 

unclear, however, if there is a sub-basin at the coring site due to the low resolution of the 545 

available bathymetry (Fig. 6).  The coring site was characterized by turbid water, steep 546 

surrounding landscape, and high minerogenic content of the core sediments (Macumber 547 

et al. 2012).  Therefore, the rapid accumulation rate at this site is likely due to in-wash of 548 

material from the lake catchment.  The other two cores from Lac de Gras (DM1 and 549 

DM3) are in a completely different sub-basin of the lake.  These cores exhibit moderate 550 

to very slow accumulation rates, as would be expected on the tundra.  551 

 552 

The Horseshoe lake core shows the highest variability in sedimentation rate of all the 553 

lakes.  The core was extracted from a steep-sided sub-basin of the main lake (Fig. 6).  554 

The bathymetric profile is at a lower resolution than Bridge and Danny’s lakes so it is not 555 

possible to determine exactly how the sediments drape over the bedrock.  What is 556 

recognizable is that the sub-basin is only connected to the main basin by a shallow (0.5 m 557 

deep) passage.  The sub-basin therefore would receive little direct sediment input from 558 
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snowmelt tributaries.  559 

 560 

 561 

Figure 6. Bathymetry profiles from six lakes with arrows showing coring sites.  The 562 

horizontal arrow at Bridge Lake is pointing to a weak second reflector that is likely a 563 

result of a change in sediment deposition from clay to gyttja, as observed in the core.  564 

The coring site for Horseshoe Lake is in a sub-basin that is hydrologically connected to 565 

the main basin through a meandering path as is shown in figure 3.  Double column 566 

image. 567 

 568 

6.2 Temporal variability in accumulation rates 569 

It is clear that the lakes in this region respond similarly during certain time periods (Fig. 570 

4).  It is also noteworthy that the density of radiocarbon dates has an influence on the 571 

observed shifts in accumulation rate.  For example, Danny’s Lake and Horseshoe Lake 572 

are well-dated cores (25 and 10 radiocarbon dates, respectively) and the accumulation 573 

profiles are much more dynamic than most of the others.  This is an important point 574 

because it emphasizes that the first means of improving an age-depth model should 575 

always be to add more radiocarbon dates.  However, because radiocarbon dates are 576 
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expensive, it can be helpful to have an idea of when major shifts in accumulation rate for 577 

a region are to be expected.  That way, a more targeted approach can be employed when 578 

refining an age-depth model using additional chronological control.  Moreover, having an 579 

idea of how the accumulation rate may shift over time for an age-depth model can assist 580 

with identification of outliers as shown in section 3.3.  Prior to a radiocarbon analysis, 581 

major shifts in accumulation rate can be determined either visually (changes in sediment 582 

composition) or by relatively inexpensive methods such as loss on ignition, magnetic 583 

susceptibility, or palynology.  584 

 585 

Seven of the ten cores that extend past about 7,000 cal BP show rapid accumulation rates 586 

(DT ~50 yr/cm) at the base of their record and for nearly all these sites this is an above 587 

average accumulation rate (Fig. 4).  This rapid accumulation rate then steadily decreases 588 

until c. 5,000 cal BP when most lakes with well-constrained age-depth models display the 589 

slowest accumulation rates.  At all seven sites, this occurs just after a transition from 590 

minerogenic-rich sediment at the bottom to organic-rich sediment at the top (Fig. 7).  591 

This is a common phenomenon in paraglacial environments when sediment availability 592 

following glaciation is relatively high as long due to the presence of unstable drift 593 

material in fluvial pathways (e.g. Church and Ryder, 1972; Ballantyne, 2002).  Sediment 594 

availability decreases as it is deposited, but also erosion rates are tempered as vegetation 595 

is established (Huang et al., 2004).  Results from an exponential exhaustion model by 596 

Ballantyne (2002) support a decreasing accumulation rate over time as unstable sediment 597 

is deposited.  Briner et al. (2010) attribute the transition from minerogenic-rich to 598 

organic-rich sediments to be indicative of the catchment for a proglacial lake getting cut 599 
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off from a nearby glacier.  While most cores show a gradual colour change toward the 600 

basal sediments, the bottom 1 cm of Bridge Lake is composed of light grey clay that was 601 

likely deposited in just such a proglacial setting.  We also see evidence for this shift in 602 

sediment type at Bridge Lake when looking at the bathymetry profile (Fig. 6), which 603 

shows a weak, second reflector near the bottom of the core site.  Around the transition 604 

from minerogenic-rich sediments to organic-rich sediments, most lakes are characterized 605 

by slowest accumulation rates, coeval with a period of treeline advance in the region 606 

(Kaufman et al., 2004 and references therein).  Similar relationships were noted for a lake 607 

in the Cathedral Mountains of British Columbia (Evans and Slaymaker, 2004) and in a 608 

crater lake in equatorial East Africa (Blaauw et al. 2011), whereby vegetation cover is 609 

thought to slow terrestrial erosion and allochthonous sediment supply to lakes due to 610 

physical stabilization of surficial materials. Following treeline advance, the accumulation 611 

rates in cores with the highest dating resolution (Danny’s, Carleton-1B, and Horseshoe 612 

lakes) begin to increase again during late Holocene Cooling. 613 

 614 

The accumulation rates for the cores from Lac de Gras, Carleton-2012 Lake, and Danny’s 615 

Lake increase sharply between 1,500 cal BP and 1,300 cal BP, creating a small dip 616 

toward increased accumulation rates (Fig. 4, 7).  Anderson et al. (2012) also found an 617 

increase in mineral accumulation rates at inland and coastal sites from c. 1,200 to 1,000 618 

cal BP on southwest Greenland.  They attribute this shift to regional cooling, increased 619 

aridity, and increased delivery of allochthonous material to the lake.  At Carleton Lake, a 620 

cooling event between c, 1,690 and c. 940 cal BP is inferred based on chironomid proxy 621 

data (Upiter et al., 2014) and is temporally correlative with the timing of First Millennial 622 
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Cooling, a period of cool climatic conditions in the Northern Hemisphere and 623 

documented in records from British Columbia (Reyes et al., 2006), Alaska (Hu et al., 624 

2001; Reyes et al., 2006; Clegg et al., 2010), and the Canadian Arctic Archipelago 625 

(Thomas et al., 2011).  Increased accumulation rates between c. 1,500 and c. 1,300 cal BP 626 

may therefore correspond to cooling in the central NWT that would have resulted in a 627 

brief period of reduced vegetation and consequently, increased erosion. 628 

 629 

Figure 7. Stratigraphic core logs plotted against cal BP.  The top of each core is defined 630 

by the uppermost non-outlying radiocarbon date.  Curved lines are accumulation profiles 631 

from Fig. 4b and are to be interpreted left to right is faster to slower.  Time ranges for the 632 

treeline advance and Late Holocene Cooling follow Kaufman et al. (2004), and First 633 

Millennial Cooling follows Reyes et al. (2006), Hu et al. (2001), Clegg et al. (2010), and 634 

Thomas et al. (2011).  Double column image. 635 

 636 

6.3 Accumulation rate (DT) prior  637 

In Section 6.1 and 6.2, accumulation rates are discussed in terms of the natural 638 

environment, which is a critical first step in any modeling study.  In this section, we 639 

switch gears to discuss the practical application of accumulation rates as prior 640 
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information for age-depth modeling with Bayesian statistics. 641 

 642 

The default DT prior for Bacon version 2.2 is 20 yr/cm based on the estimate from the 643 

great lakes region by Goring et al. (2012).  Bacon version 2.2 is programmed to suggest 644 

an alternative DT based on round values (e.g. 10, 50, 100 yr/cm) if the default of 20 645 

yr/cm is inappropriate for the core.  As was shown for Waite Lake, 20 yr/cm is an 646 

appropriate estimate for most lakes found in the boreal forest zone, but lakes north of the 647 

treeline accumulated at much slower rates.  Here we use estimates from a summary of 648 

accumulation rate data for the region to construct the age-depth models in section 5.  The 649 

most striking feature of these age-depth models is how variable the accumulation rate 650 

appears to be. Figure 8 (constructed using the plot.acc.rate() function in Bacon 2.2) 651 

shows a more detailed version of accumulation rate patterns for the three cores from 652 

Section 5.  Waite Lake only covers the past c. 3,500 years so variability is minimal, but 653 

both the longer Danny’s and Horseshoe Lake records display highly variable 654 

accumulation rates (as discussed in Section 6.2).  The estimates for accumulation rate 655 

entered a priori into the model therefore act as a guide for the age-depth model, but do 656 

not control the model entirely.  657 

 658 

Figure 8. Accumulation profiles plotted with Bacon v2.2.  The darker the grey, the 659 
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greater the certainty.   Double column image. 660 

 661 

When an age-depth model is well dated, the dates themselves should guide the 662 

accumulation rate.  In sections of the core with low dating resolution or age reversals, the 663 

Bayesian model can aid by incorporating prior information (Christen, 1994; Buck et al., 664 

1996; Buck and Millard, 2004; Blaauw and Heegaard, 2012).  Here we compare the 665 

Bayesian models to the Clam models in order to evaluate the effect of incorporating prior 666 

information.  Because the Clam models were initially constructed with IntCal09, we 667 

reconstructed the models with IntCal13 order to ensure consistency (Supplementary Fig. 668 

1).  Moreover, a hiatus was added at 45 cm to the Horseshoe Lake model constructed 669 

with Clam.  Differences between the maximum probability age of the Bayesian model 670 

and non-Bayesian model for Waite Lake, Danny’s Lake, and Horseshoe Lake are 671 

presented in Figure 9.   672 

 673 

Waite Lake has the simplest chronology, with only one distinguishable shift in 674 

accumulation rate just before c. 1,500 cal BP.  The difference between the Bayesian and 675 

non-Bayesian models is 90 years at the most, which is minimal.  For Danny’s Lake, the 676 

difference between the two models is also fairly minimal (175 years at the most), which 677 

happens near the bottom of the model where the greatest uncertainty lies.  678 

 679 

The difference between Bayesian and non-Bayesian age depth models for the Horseshoe 680 

Lake record does not tend to exceed 200 years, except in the region of the hiatus between 681 

c. 6,000 and c. 4,000 cal BP (45 cm), where the difference is 468 years.  This is to be 682 
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expected as the hiatus is handled slightly differently between the two programs and it 683 

causes a major disturbance in the model.  C/N ratios from Horseshoe Lake suggest that 684 

the sub-basin of Horseshoe Lake has undergone fluctuations in water depth (Griffith, 685 

2013).  Therefore, it is possible that there is a hiatus in deposition between c. 6,000 and c. 686 

4,000 cal BP.  A hiatus would also explain the anomalously slow accumulation rates 687 

around this period as shown in figure 4.   688 

 689 

Although not shown in Figure 9, the age-depth models constructed with Bacon have 690 

wider and more realistic calculated error ranges than for the smooth spline models 691 

constructed with Clam.  692 

 693 

   694 
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 695 

Figure 9. Plot showing the difference (in years) versus depth between the models 696 

constructed in Clam and Bacon for the Horseshoe, Danny’s and Waite Lake cores.  697 

Single column image. Color for web version only.  698 

 699 

7. Conclusions 700 

High resolution sampling and detailed age dating of subarctic lake cores from the 701 

Northwest Territories have provided new information about the spatial and temporal 702 

variability in lake accumulation rates in this cold, high latitude region.  Based on a 703 

dataset comprised of 105 radiocarbon dates (64 new and 41 previously published) from 704 

22 sites distributed amongst 18 lakes, we make the following conclusions:    705 

(1) “Rapid” accumulation rates (DT ~20 yr/m) tend to occur in lakes with high 706 

productivity (boreal forest zone) or high sediment availability.  Sites north of the treeline 707 

are characterized by moderate (DT ~70yr/cm) to slow (DT >100 yr/cm) accumulation 708 

rates with high spatial variability. 709 

(2) Temporal shifts in accumulation rates coincide with centennial to millennial-scale 710 

climate change and the waxing and waning of vegetation cover, which is an important 711 

mechanism controlling erosion of material into lakes.  Accumulation rates prior to about 712 
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7,000 cal BP were rapid, reflecting recently deglaciated conditions characterized by high 713 

sediment availability and low vegetation cover.  As vegetation became better established 714 

during the treeline advance, we observed a shift from minerogenic-rich to organic-rich 715 

sediments and a decrease in accumulation rates between 7,000 and 4,000 cal BP. This 716 

was followed by a cool period and increasing accumulation rates between 4,000 cal BP 717 

and 2,500 cal BP.   718 

(3) Deposition time estimates from this research will be useful as a starting point for 719 

building robust age-depth models using Bayesian statistics and state-of-the-art software 720 

such as Bacon.  Moreover, by elucidating the timing of regional shifts in accumulation 721 

rate for the Canadian Subarctic, future radiocarbon dating sampling strategies will be 722 

better informed about where to add additional radiocarbon dates to an age-depth model.  723 
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 a) Waite Lake 1085 

 1086 

b) Danny’s Lake 1087 

 1088 

c) Horseshoe Lake  1089 

 1090 

Supplementary Figure 1. Smooth spline age-depth model constructed for: a) Waite 1091 
Lake; b) Danny’s Lake; and c) Horseshoe Lake using the age-depth modeling software 1092 
Clam and the IntCal13 calibration curve.  For Horseshoe Lake, a hiatus is shown with a 1093 
dashed line at 45 cm 1094 


