3,556 research outputs found

    An Experimental Study of Effects of Step Roughness in Skimming Flows on Stepped Chutes

    Get PDF
    On a spillway chute, a stepped design increases the rate of energy dissipation on the chute itself and reduces the size of a downstream energy dissipator. Up to date, the effects of step roughness on the flow properties remain unknown despite the practical relevance to damaged concrete steps, rock chutes and gabions weirs. New measurements were conducted in a large-size laboratory facility with two step conditions (smooth and rough) and three types of step roughness. Detailed air-water flow properties were measured systematically for several flow rates. The results showed faster flow motion on rough step chutes. Although the finding is counter-intuitive, it is linked with the location of the inception point of free-surface aeration being located further downstream than for a smooth stepped chute for an identical flow rate. In the aerated flow region, the velocities on rough-step chutes were larger than those of smooth chute flows for a given flow rate and dimensionless location from the inception point of free-surface aeration both at step edges and between step edges. The results suggest that design guidelines for smooth (concrete) stepped spillway may not be suitable to rough stepped chutes including gabion stepped weirs, and older stepped chutes with damaged steps

    Evaluating standards of care in psoriatic arthritis of the QUANTUM project (qualitative initiative to improve outcomes): results of an accreditation project in Spain

    Get PDF
    In Spain, the QUANTUM project has been promoted to reduce variability in clinical practice and improve the care and quality of life of people with psoriatic arthritis (PsA) by accrediting PsA units throughout the Spanish national health system. To present the results of this approach which sought to ensure an optimum level of quality for patients with PsA. Descriptive analysis of the self-assessments that the PsA units have carried out assessing their degree of compliance with the quality standards established in the QUANTUM project grouped into four blocks: shortening time to diagnosis; optimizing disease management; improving multidisciplinary collaboration; and improving patient monitoring. A total of 41 PsA units were self-evaluated. They met 64.1% of the defined quality standards. Optimize disease management obtained a higher level of standards compliance (72%) and improve multidisciplinary collaboration the lesser (63.9%). Accessibility to the treatments available for PsA in all hospitals was guaranteed (100%). Appropriate diagnostic equipment is available (97.6%). Compliance with specific quality standards leads to detect actions that should be implemented: quality of life assessment (9.8%), locomotor system assessment (12.2%), physical examination data record (14.6%), periodic cardiovascular risk assessment (17.1%). The QUANTUM project results make it possible to visualise how to care for patients with PsA is being developed in Spain. Problems identified in recent multinational reports are also identified in Spain

    Impact of FLT3–ITD Mutation Status and Its Ratio in a Cohort of 2901 Patients Undergoing Upfront Intensive Chemotherapy: A PETHEMA Registry Study

    Get PDF
    FLT3–ITD results in a poor prognosis in terms of overall survival (OS) and relapse-free survival (RFS) in acute myeloid leukemia (AML). However, the prognostic usefulness of the allelic ratio (AR) to select post-remission therapy remains controversial. Our study focuses on the prognostic impact of FLT3–ITD and its ratio in a series of 2901 adult patients treated intensively in the pre-FLT3 inhibitor era and reported in the PETHEMA registry. A total of 579 of these patients (20%) harbored FLT3–ITD mutations. In multivariate analyses, patients with an FLT3–ITD allele ratio (AR) of >0.5 showed a lower complete remission (CR rate) and OS (HR 1.47, p = 0.009), while AR > 0.8 was associated with poorer RFS (HR 2.1; p 0.5). Using the maximally selected log-rank statistics, we established an optimal cutoff of FLT3–ITD AR of 0.44 for OS, and 0.8 for RFS. We analyzed the OS and RFS according to FLT3–ITD status in all patients, and we found that the group of FLT3–ITD-positive patients with AR 0.44, allo-HSCT was superior to auto-HSCT in terms of OS and RFS. This study provides more evidence for a better characterization of patients with AML harboring FLT3–ITD mutations.This study was fundedby Instituto de Salud Carlos III (ISCIII) through the project PI19/01518 and PI19/00730 and co- funded by the European Union, the CRIS Against Cancer Foundation, grant 2018/001, and by the Instituto de Investigación Hospital 12 de Octubre (IMAS12). APeer reviewe

    A polymeric nanomedicine diminishes inflammatory events in renal tubular cells

    Get PDF
    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65 nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS REDINREN RD 06/0016; Sociedad Española de NefrologĂ­a (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de IntensificaciĂłn de la Actividad Investigadora in the Sistema Nacional de Salud of the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo) and AdriĂĄn Ramos, by FIS (Programa Miguel Servet)

    Metal-Substituted Microporous Aluminophosphates

    Get PDF
    This chapter aims to present the zeotypes aluminophosphates (AlPOs) as a complementary alternative to zeolites in the isomorphic incorporation of metal ions within all-inorganic microporous frameworks as well as to discuss didactically the catalytic consequences derived from the distinctive features of both frameworks. It does not intend to be a compilation of either all or the most significant publications involving metal-substituted microporous aluminophosphates. Families of AlPOs and zeolites, which include metal ion-substituted variants, are the dominant microporous materials. Both these systems are widely used as catalysts, in particular through aliovalent metal ions substitution. Here, some general description of the synthesis procedures and characterization techniques of the MeAPOs (metal-contained aluminophosphates) is given along with catalytic properties. Next, some illustrative examples of the catalytic possibilities of MeAPOs as catalysts in the transformation of the organic molecules are given. The oxidation of the hardly activated hydrocarbons has probably been the most successful use of AlPOs doped with the divalent transition metal ions Co2+, Mn2+, and Fe2+, whose incorporation in zeolites is disfavoured. The catalytic role of these MeAPOs is rationalized based on the knowledge acquired from a combination of the most advanced characterization techniques. Finally, the importance of the high specificity of the structure-directing agents employed in the preparation of MeAPOs is discussed taking N,N-methyldicyclohexylamine in the synthesis of AFI-structured materials as a driving force. It is shown how such a high specificity could be predicted and how it can open great possibilities in the control of parameters as critical in catalysis as crystal size, inter-and intracrystalline mesoporosity, acidity, redox properties, incorporation of a great variety of heteroatom ions or final environment of the metal site (surrounding it by either P or Al)

    Mapping land-use fluxes for 2001–2020 from global models to national inventories

    Get PDF
    With the focus of climate policy shifting from pledges to implementation, there is an increasing need to track progress on climate change mitigation at country level, especially for the land-use sector. Despite new tools and models offering unprecedented monitoring opportunities, striking differences remain in estimations of anthropogenic land-use CO2 fluxes between the national greenhouse gas inventories (NGHGIs) used to assess compliance with the Paris Agreement, and the Global Carbon Budget and IPCC assessment reports, both based on global bookkeeping models (BMs).G.G. acknowledges funding from the EU’s Horizon 2020 VERIFY project (no. 776810). J.G.C. acknowledges the support of the Australian National Environmental Science Program - Climate Systems Hub. T.G. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement #101003536 (ESM2025 project), and by the Austrian Science Fund (FWF) under grant agreement P31796-N29 (ERM project). The authors thank Peter Anthoni and Almut Arneth (LPJ-GUESS model) and Sebastian Lienert (LPX model

    Winter respiratory C losses provide explanatory power for net ecosystem productivity

    Get PDF
    Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential for climate change decisions and requirements in the context of national forest growth and greenhouse gas inventories. However, drivers and underlying mechanisms determining NEPc (e.g., climate and nutrients) are not entirely understood yet, particularly when considering the influence of past periods. Here we explored the explanatory power of the compensation day (cDOY)defined as the day of year when winter net carbon losses are compensated by spring assimilationfor NEPc in 26 forests in Europe, North America, and Australia, using different NEPc integration methods. We found cDOY to be a particularly powerful predictor for NEPc of temperate evergreen needleleaf forests (R-2=0.58) and deciduous broadleaf forests (R-2=0.68). In general, the latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on the integration method for NEPc, forest type, and whether the site had a distinct winter net respiratory carbon loss or not. The integration methods starting in autumn led to better predictions of NEPc from cDOY then the classical calendar method starting 1 January. Limited explanatory power of cDOY for NEPc was found for warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the influence of winter processes and the delayed responses of previous seasons' climatic conditions on current year's NEPc. Such carry-over effects may contain information from climatic conditions, carbon storage levels, and hydraulic traits of several years back in time.Peer reviewe

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Depletion depth studies with the MALTA2 sensor, a depleted monolithic active pixel sensor

    Get PDF
    MALTA2 is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower 180 nm CMOS imaging process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors both in terms of increased tracking performance due to lower material budget but also in terms of ease of integration and construction costs due to the monolithic design. Current research and development efforts are aimed towards radiation-hard designs up to 100 Mrad in Total Ionizing Dose and 3 × 1015 1 MeV neq / cm2 in Non-Ionizing Energy Loss. One important property of a sensor’s radiation hardness is the depletion depth at which efficient charge collection is achieved via drift movement. Grazing angle test-beam data was taken during the 2023 SPS CERN test beam with the MALTA telescope and Edge Transient Current Technique studies were performed at DESY in order to develop a quantitative study of the depletion depth for un-irradiated, epitaxial MALTA2 samples. The study is planned to be extended for irradiated and Czochralski MALTA2 samples
    • 

    corecore