123 research outputs found

    Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis

    Full text link
    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second parts (HD2) of 9090^{\circ} head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period T=2jT=2^j (% j=1,2,...... ,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frequency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident difference than the R-R intervals. This study suggests a difference in the response of the vessels and the heart to different body positions. The partial dissociation between VLF and LF results is a physiologically relevant finding of this work.Comment: RevTex,8 figure

    Pharmacological characterization of a new Ca2+ sensitizer

    Get PDF
    The benzimidazole molecule was modified to synthesize a Ca(2+) sensitizer devoid of additional effects associated with Ca(2+) overload. Newly synthesized compounds, termed 1, 2, 3, 4, and 5, were evaluated in spontaneously beating and electrically driven atria from reserpine-treated guinea pigs. Compound 3 resulted as the most effective positive inotropic agent, and experiments were performed to study its mechanism of action. In spontaneously beating atria, the inotropic effect of 3 was concentration-dependent (3.0 microM-0.3 mM). Compound 3 was more potent and more active than the structurally related Ca(2+) sensitizers sulmazole and caffeine, but unlike them it did not increase the heart rate. In electrically driven atria, the inotropic activity of 3 was well preserved and it was not inhibited by propranolol, prazosin, ranitidine, pyrilamine, carbachol, adenosine deaminase, or ruthenium red. At high concentrations (0.1-1.0 mM) 3 inhibited phosphodiesterase-III, whereas it did not affect Na(+)/K(+)-ATPase, sarcolemmal Ca(2+)-ATPase, Na(+)/Ca(2+) exchange carrier, or sarcoplasmic reticulum Ca(2+) pump activities of guinea pig heart. In skinned fibers obtained from guinea pig papillary muscle and skeletal soleus muscle, compound 3 (0.1 mM, 1 mM) shifted the pCa/tension relation curve to the left, with no effect on maximal tension and no signs of toxicity. Compound 3 did not influence the basal or raised tone of guinea pig isolated aorta rings, whose cells do not contain the contractile protein troponin. The present results indicate that the inotropic effect of compound 3 seems to be primarily sustained by sensitization of the contractile proteins to Ca(2+)

    Initial operation of the International Gravitational Event Collaboration

    Full text link
    The International Gravitational Event Collaboration, IGEC, is a coordinated effort by research groups operating gravitational wave detectors working towards the detection of millisecond bursts of gravitational waves. Here we report on the current IGEC resonant bar observatory, its data analysis procedures, the main properties of the first exchanged data set. Even though the available data set is not complete, in the years 1997 and 1998 up to four detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted to the International Journal of Modern Physic

    Retrospective analysis of microorganisms isolated from cystic fibrosis patients in Southern Italy, 2002-2010.

    Get PDF
    ObjectiveThis study aim was to determine the prevalence of microorganisms in the respiratory tract of patients with cystic fibrosis (CF) admitted to the CF Reference Centre in Southern Italy between 2002-2010. Methods Microbiology assessment of samples (sputum and tracheal aspirates) collected from patients with pulmonary exacerbation admitted to hospital was carried out. All patients were registered in a database and clinical and microbiological data were retrospectively analysed. Results Overall, 188 patients were included and a total of 1217 samples were analysed. The most common microorganisms were Staphylococcus aureus (78.7% of the patients) and Pseudomonas aeruginosa (58%), followed by Candida albicans (19.1%), Haemophilus influenzae (13.3%) and Aspergillus fumigatus (9.6%). Conclusion Compared to similar studies performed in other European countries, our microbiological data, especially the low occurrence of filamentous fungi, suggest a specific local epidemiology, probably related to some uncommon CFTR mutations, which are specific to Southern Italy

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U
    corecore