164 research outputs found
Shear dynamics in Bianchi I cosmologies with R^n-gravity
We give the equations governing the shear evolution in Bianchi spacetimes for
general f(R)-theories of gravity. We consider the case of R^n-gravity and
perform a detailed analysis of the dynamics in Bianchi I cosmologies which
exhibit local rotational symmetry. We find exact solutions and study their
behaviour and stability in terms of the values of the parameter n. In
particular, we found a set of cosmic histories in which the universe is
initially isotropic, then develops shear anisotropies which approaches a
constant value.Comment: 25 pages LaTeX, 6 figures. Revised to match the final version
accepted for publication in CQ
Conformal Transformations in Cosmology of Modified Gravity: the Covariant Approach Perspective
The 1+3 covariant approach and the covariant gauge-invariant approach to
perturbations are used to analyze in depth conformal transformations in
cosmology. Such techniques allow us to obtain very interesting insights on the
physical content of these transformations, when applied to non-standard
gravity. The results obtained lead to a number of general conclusions on the
change of some key quantities describing any two conformally related
cosmological models. In particular, it is shown that the physics in the
Einstein frame has characteristics which are completely different from those in
the Jordan frame. Even if some of the geometrical properties of the cosmology
are preserved (homogeneous and isotropic Universes are mapped into homogeneous
and isotropic universes), it can happen that decelerating cosmologies are
mapped into accelerated ones. Differences become even more pronounced when
first-order perturbations are considered: from the 1+3 equations it is seen
that first-order vector and tensor perturbations are left unchanged in their
structure by the conformal transformation, but this cannot be said of the
scalar perturbations, which include the matter density fluctuations. Behavior
in the two frames of the growth rate, as well as other evolutionary features,
like the presence or absence of oscillations, etc., appear to be different too.
The results obtained are then explicitly interpreted and verified with the help
of some clarifying examples based on -gravity cosmologies.Comment: 26 pages, 8 figure
Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis
Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1-/- mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1WT or cyclin D1KE in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1KE induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1WT and cyclin D1KE to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis
Subjecting Elite Athletes to Inspiratory Breathing Load Reveals Behavioral and Neural Signatures of Optimal Performers in Extreme Environments
Background: It is unclear whether and how elite athletes process physiological or psychological challenges differently than healthy comparison subjects. In general, individuals optimize exercise level as it relates to differences between expected and experienced exertion, which can be conceptualized as a body prediction error. The process of computing a body prediction error involves the insular cortex, which is important for interoception, i.e. the sense of the physiological condition of the body. Thus, optimal performance may be related to efficient minimization of the body prediction error. We examined the hypothesis that elite athletes, compared to control subjects, show attenuated insular cortex activation during an aversive interoceptive challenge. Methodology/Principal Findings: Elite adventure racers (n = 10) and healthy volunteers (n = 11) performed a continuous performance task with varying degrees of a non-hypercapnic breathing load while undergoing functional magnetic resonance imaging. The results indicate that (1) non-hypercapnic inspiratory breathing load is an aversive experience associated with a profound activation of a distributed set of brain areas including bilateral insula, dorsolateral prefrontal cortex and anterior cingulated; (2) adventure racers relative to comparison subjects show greater accuracy on the continuous performance task during the aversive interoceptive condition; and (3) adventure racers show an attenuated right insula cortex response during and following the aversive interoceptive condition of non-hypercapnic inspirator
A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
- …