6,404 research outputs found
Photonic Artifacts in Ratiometric Luminescence Nanothermometry
Ongoing developments in science and technology require temperature measurements at increasingly higher spatial resolutions. Nanocrystals with temperature-sensitive luminescence are a popular thermometer for these applications offering high precision and remote read-out. Here, we demonstrate that ratiometric luminescence thermometry experiments may suffer from systematic errors in nanostructured environments. We place lanthanide-based luminescent nanothermometers at controlled distances of up to 600 nm from a Au surface. Although this geometry supports no absorption or scattering resonances, distortion of the emission spectra of the thermometers due to the modified density of optical states results in temperature read-out errors of up to 250 K. Our simple analytical model explains the effects of thermometer emission frequencies, experimental equipment, and sample properties on the magnitude of the errors. We discuss the relevance of our findings in several experimental scenarios. Such errors do not always occur, but they are expected in measurements near reflecting interfaces or scattering objects
Development of a Sandwich ELISA to Measure Exposure to Occupational Cow Hair Allergens
Background: Cow hair and dander are important inducers of occupational allergies in cattle-exposed farmers. To estimate allergen exposure in farming environments, a sensitive enzyme immunoassay was developed to measure cow hair allergens. Methods: A sandwich ELISA was developed using polyclonal rabbit antibodies against a mixture of hair extracts from different cattle breeds. To assess the specificity of the assay, extracts from other mammalian epithelia, mites, molds and grains were tested. To validate the new assay, cow hair allergens were measured in passive airborne dust samples from the stables and homes of farmers. Dust was collected with electrostatic dust fall collectors (EDCs). Results: The sandwich ELISA was found to be very sensitive (detection limit: 0.1 ng/ml) and highly reproducible, demonstrating intra-and interassay coefficients of variation of 4 and 10%, respectively. The assay showed no reactivity with mites, molds and grains, but some cross-reactivity with other mammalian epithelia, with the strongest reaction with goat. Using EDCs for dust sampling, high concentrations of bovine allergens were measured in cow stables (4,760-559,400 mu g/m(2)). In addition, bovine allergens were detected in all areas of cattle farmer dwellings. A large variation was found between individual samples (0.3-900 mu g/m(2)) and significantly higher values were discovered in changing rooms. Conclusion: The ELISA developed for the detection of cow hair proteins is a useful tool for allergen quantification in occupational and home environments. Based on its low detection limit, this test is sensitive enough to detect allergens in passive airborne dust. Copyright (C) 2011 S. Karger AG, Base
Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites
Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG
Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data
Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample
Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS
The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds
Characterization of antimicrobial use and co-infections among hospitalized patients with COVID-19: a prospective observational cohort study
Purpose: To investigate antimicrobial use and primary and nosocomial infections in hospitalized COVID-19 patients to provide data for guidance of antimicrobial therapy.
Methods: Prospective observational cohort study conducted at Charite-Universitatsmedizin Berlin, including patients hospitalized with SARS-CoV-2-infection between March and November 2020.
Results: 309 patients were included, 231 directly admitted and 78 transferred from other centres. Antimicrobial therapy was initiated in 62/231 (26.8%) of directly admitted and in 44/78 (56.4%) of transferred patients. The rate of microbiologically confirmed primary co-infections was 4.8% (11/231). Although elevated in most COVID-19 patients, C-reactive protein and procalcitonin levels were higher in patients with primary co-infections than in those without (median CRP 110 mg/l, IQR 51-222 vs. 36, IQR 11-101, respectively; p < 0.0001). Nosocomial bloodstream and respiratory infections occurred in 47/309 (15.2%) and 91/309 (29.4%) of patients, respectively, and were associated with need for invasive mechanical ventilation (OR 45.6 95%CI 13.7-151.8 and 104.6 95%CI 41.5-263.5, respectively), extracorporeal membrane oxygenation (OR 14.3 95%CI 6.5-31.5 and 16.5 95%CI 6.5-41.6, respectively), and haemodialysis (OR 31.4 95%CI 13.9-71.2 and OR 22.3 95%CI 11.2-44.2, respectively). The event of any nosocomial infection was significantly associated with in-hospital death (33/99 (33.3%) with nosocomial infection vs. 23/210 (10.9%) without, OR 4.1 95%CI 2.2-7.3).
Conclusions: Primary co-infections are rare, yet antimicrobial use was frequent, mostly based on clinical worsening and elevated inflammation markers without clear evidence for co-infection. More reliable diagnostic prospects may help to reduce overtreatment. Rates of nosocomial infections are substantial in severely ill patients on organ support and associated with worse patient outcome
Mutations in FKBP10 can cause a severe form of isolated Osteogenesis imperfecta
<p>Abstract</p> <p>Background</p> <p>Mutations in the <it>FKBP10 </it>gene were first described in patients with Osteogenesis imperfecta type III. Two follow up reports found <it>FKBP10 </it>mutations to be associated with Bruck syndrome type 1, a rare disorder characterized by congenital contractures and bone fragility. This raised the question if the patients in the first report indeed had isolated Osteogenesis imperfecta or if Bruck syndrome would have been the better diagnosis.</p> <p>Methods</p> <p>The patients described here are affected by severe autosomal recessive Osteogenesis imperfecta without contractures.</p> <p>Results</p> <p>Homozygosity mapping identified <it>FKBP10 </it>as a candidate gene, and sequencing revealed a base pair exchange that causes a C-terminal premature stop codon in this gene.</p> <p>Conclusions</p> <p>Our study demonstrates that <it>FKBP10 </it>mutations not only cause Bruck syndrome or Osteogenesis imperfecta type III but can result in a severe type of isolated Osteogenesis imperfecta type IV with prenatal onset. Furthermore, it adds dentinogenesis imperfecta to the spectrum of clinical symptoms associated with <it>FKBP10 </it>mutations.</p
Intake of heterocyclic aromatic amines and the risk of prostate cancer in the EPIC-Heidelberg cohort
BACKGROUND: Heterocyclic amines (HCA) are positively associated with prostate cancer risk in animal models. Because of mostly inconsistent results of epidemiological studies, we examined the association between intake of HCA and prostate cancer risk. METHODS: In the EPIC-Heidelberg cohort, detailed information on diet, anthropometry, and lifestyle was assessed between 1994 and 1998. Dietary HCA intake was estimated using information on meat consumption, cooking methods, and preferred degree of browning. During 104,195 person-years of follow-up, 337 incident cases of prostate cancer (123 advanced cases) were identified among 9,578 men with valid dietary information. Multivariate Cox proportional hazards regression was used to examine the association between intake of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-3,4,8-dimethylimidazo[4,5-f]quinoxaline (DiMeIQx) and prostate cancer. RESULTS: Men in the highest quartiles of PhIP, MeIQx, and DiMeIQx intake, respectively, had no increased risk of prostate cancer compared with men in the lowest quartiles (HR = 0.89, 95% CI 0.66-1.22 [PhIP]; 1.06, 0.77-1.45 [MeIQx]; 0.98, 0.72-1.34 [DiMeIQx]). There were no associations between HCA intake and advanced prostate cancer or between high consumption of strongly browned meat and prostate cancer. DISCUSSION: Our data do not support the hypothesis that HCA intake as consumed in a regular diet is a risk factor for prostate cancer
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers
Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …