16 research outputs found

    Zr-metal adhesion on graphenic nanostructures

    Get PDF
    3 pages, 3 figures.-- PACS nrs.: 68.35.Np, 61.46.Fg, 61.46.Df.Our high resolution transmission electronic microscopy studies of multiwall carbon nanotubes show, after the growth of zirconia nanoparticles by a hydrothermal route, the presence of surface Zr, forming an atomically thin layer. Using first-principles calculations we investigate the nature of the Zr–C interaction, which is neither ionic nor covalent, and the optimal coverage for the Zr metal in a graphene flake. This preferred coverage is in agreement with that deduced from electron energy loss spectra experiments. We show also that the amount of charge transferred to the C layer saturates as the Zr coverage increases and the Zr–C bond becomes weaker.We want to acknowledge the support by the ETORTEK (NANOMAT) program of the Basque government, the Intramural Special Project (Reference No. 2006601242), the Spanish Ministerio de Ciencia y Tecnología (MCyT) of Spain (Grant No. Fis 2007-66711-C02-C01), and the European Network of Excellence NANOQUANTA (NM4-CT-2004-500198). Y.S.P. gratefully acknowledges his DIPC grant.Peer reviewe

    Chemical Bonding of Transition-metal Co13_{13} Clusters with Graphene

    Full text link
    We carried out density functional calculation to study Co13_{13} clusters on graphene. We deposit several free isomers in different disposition respect to hexagonal lattice nodes, studying even the hcphcp 2d2d isomer recently obtained as the most stable one. Surprisingly, Co13_{13} clusters bonded to graphene prefer icosahedronlikeicosahedron-like structures where the low lying isomer is much distorted, because it is linked with more bonds than in previous works. For any isomer the most stable position binds to graphene by the Co atoms that can lose electrons. We find that the charge transfers between graphene and clusters are small enough to conclude that the Co-graphene binding is not ionic-like but chemical. Besides, the same order of stability among the different isomers on doped graphene is well kept. These findings could also be of interest for magnetic clusters on graphenic nanostructures such as ribbons and nanotubes.Comment: 12 pages, 6 figure

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet

    Full text link
    The electronic and magnetic properties of single 3d transition-metal(TM) atom (V, Cr, Mn, Fe, Co, and Ni) adsorbed graphdiyne (GDY) and graphyne (GY) are systematically studied using first-principles calculations within the density functional framework. We find that the adsorption of TM atom not only efficiently modulates the electronic structures of GDY/GY system, but also introduces excellent magnetic properties, such as half-metal and spin-select half-semiconductor. Such modulation originates from the charge transfer between TM adatom and the GDY/GY sheet as well as the electron redistribution of the TM intra-atomic s, p, and d orbitals. Our results indicate that the TM adsorbed GDY/GY are excellent candidates for spintronics.Comment: 8 pages, 7 figure

    sp-Electron Magnetic Clusters with a Large Spin in Graphene

    Get PDF
    Motivated by recent experimental data (Sepioni, M. et al. Phys. Rev. Lett. 2010, 105, 207205), we have studied the possibility of forming magnetic clusters with spin S> 1/2 on graphene by adsorption of hydrogen atoms or hydroxyl groups. Migration of hydrogen atoms and hydroxyl groups on the surface of graphene during the delamination of HOPG led to the formation of seven-atom or seven-OH-group clusters with S=5/2 that were of a special interest. The coincidence of symmetry of the clusters with the graphene lattice strengthens the stability of the cluster. For (OH)7 clusters that were situated greater than 3 nm from one another, the reconstruction barrier to a nonmagnetic configuration was approximately 0.4 eV, whereas for H7 clusters, there was no barrier and the high-spin state was unstable. Stability of the high-spin clusters increased if they were formed on top of ripples. Exchange interactions between the clusters were studied and we have shown that the ferromagnetic state is improbable. The role of the chemical composition of the solvent used for the delamination of graphite is discussed.Comment: 22 pages, 1 table, 4 figures. Minor changes, few refs added. Accepted to ACS Nan

    Do Cement Nanotubes exist?

    No full text
    Using atomistic simulations, this work indicates that cement nanotubes can exist. The chemically compatible nanotubes are constructed from the two main minerals in ordinary Portland cement pastes, namely calcium hydroxide and a calcium silicate hydrate called tobermorite. These results show that such nanotubes are stable and have outstanding mechanical properties, unique characteristics that make them ideally suitable for nanoscale reinforcements of cements.Peer reviewe
    corecore