311 research outputs found

    Study on the Effect of the addition of Synthesized Nano scale Lead Oxide for Concrete Samples used in Gamma-Ray Shielding

    Get PDF
    Our goal in this research is to investigate the effect ofconcrete incorporated with nanoparticles of lead oxide inpowder form by different percentages on Gamma-ray shieldingcharacteristics. The lead oxide nanostructure was synthesizedthrough the reaction of citric acid (C6H7O8.H2O) solution andlead acetate (Pb (C2H3O2)) solution as stabilizer and precursor,respectively. In this synthesis, the prepared lead oxidenanostructure was characterized by X-Ray Diffraction (XRD)and Scanning Electron Microscopy (SEM) techniques. Theprepared PbO consists of the crystallites about 50 nm. Theconcrete samples were prepared according to the localstandards of building materials and doped with PbO nanopowders by different percentages, 0%, 5%and 10% (by weight)by replacing cement and keeping constant w/c ratio. Moreover,commercial PbO bulk powder additive was used to check theeffect of particle size on concrete attenuation properties. The γ-rays attenuation coefficients were measured as a function of theadditive percentage of nanoparticles of lead oxides and using γ-ray point source,126Ra with different energies in the range(0.295- 1.73) MeV. The results were compared with that fornormal concrete incorporated with the same percentage of bulklead oxide. It was found that the γ-ray attenuation coefficientfor concrete doped with nanoparticles of PbO was slightlyimproved

    Effect of dexamethasone on reducing pain and gastrointestinal symptoms associated with cesarean section: a systematic review and meta-analysis

    Get PDF
    Background: Dexamethasone has analgesic and antiemetic actions that have been documented in the literature. Therefore, we performed a systematic review and meta-analysis to investigate its overall effectiveness in reducing a variety of negative outcomes after cesarean section. Objectives: To investigate the efficacy and safety of dexamethasone for reducing pain associated with cesarean section, nausea, vomiting, pruritus, postoperative need for analgesia, postoperative antiemetic requests and headache. Methods: We searched PubMed, Cochrane CENTRAL, SCOPUS, and Web of Science for relevant clinical trials. We then performed a systematic review and meta-analysis, including only randomized, placebo-controlled clinical trials. Our main population target was women undergoing elective cesarean delivery. The intervention under consideration was dexamethasone administered both by intravenous (IV) or subcutaneous (SC) over a variety of doses. The comparator was a placebo. Our main outcomes included: (1) perceptions as indicated by pain scores, (2) occurrence of nausea and (3) occurrence of vomiting. Secondary outcomes included: (4) occurrence of pruritus, (5) need for postoperative analgesia, (6) need for postoperative antiemetic drugs and (7) occurrence of headache. We assessed the quality of included studies using the risk of bias tool described in Cochrane\u27s handbook for systematic reviews of interventions. Results: We found that dexamethasone seemed to significantly reduce scores for pain at rest (p<0.001), as well as occurrence of nausea (p<0.001) and vomiting (p<0.001). The drug also showed significant reduction of negative symptoms in other secondary outcomes, including need for postoperative analgesia (p<0.001) and postoperative antiemetic drugs (p<0.001). However, the drug showed no significant effect in reducing headache and pruritus or in improving pain at movement scores. Conclusion: Dexamethasone appears to decrease perception of pain at rest and protects against nausea and vomiting. However, it does not seem effective against headaches or pruritus

    Efficacy and safety of Elagolix in the treatment of endometriosis associated pain: a systematic review and network meta-analysis

    Get PDF
    Background: Endometriosis commonly presents with dysmenorrhea, non-menstrual pelvic pain, and infertility. Elagolix is an oral, short-acting, gonadotropin-releasing hormone antagonist acting through complete estrogen suppression. Objective: To evaluate the evidence from published randomized controlled trials (RCTs) about the efficacy and safety of Elagolix in the treatment of endometriosis associated pain. Search strategy: Electronic databases containing articles published between January 2000 and February 2020 were searched using the MeSH terms (Elagolix OR gonadotropin-releasing hormone antagonist OR GnRH antagonist OR antigonadotropin) AND (endometriosis) AND (pelvic pain). Selection criteria: All RCTs assessing the efficacy of Elagolix in the treatment of pain associated with endometriosis were considered for this network meta-analysis, where five studies were deemed eligible for this review. Data collection and analysis: The mean difference (MD) and confidence intervals (95% CI) for continuous outcomes including analgesic use, dysmenorrhea, non-menstrual pelvic pain, and quality of life were calculated. Main results: Elagolix 250 mg reduced dysmenorrhea significantly, as compared to placebo, (MD = -0.41, 95% CI [-0.7, -0.13]) at 12 weeks, while Elagolix 200 mg reduced dysmenorrhea significantly (MD= -1.2, 95% CI [-1.9, -0.57]) compared to placebo after 24 weeks of treatment. Conclusions: Elagolix 200 mg seems to be an effective drug with fewer side effects when used to reduce dysmenorrhea and non-menstrual pelvic pain after 24 weeks of treatment in patients with endometriosis

    Exploring the binding sites of Staphylococcus aureus phenylalanine tRNA synthetase: A homology model approach

    Get PDF
    Increased resistance of MRSA (multidrug resistance Staphylococcus aureus) to anti-infective drugs is a threat to global health necessitating the development of anti-infectives with novel mechanisms of action. Phenylalanine tRNA synthetase (PheRS) is a unique enzyme of the aminoacyl-tRNA synthetases (aaRSs), which are essential enzymes for protein biosynthesis. PheRS is an (αb)2 tetrameric enzyme composed of two alpha subunits (PheS) and two larger beta subunits (PheT). Our potential target in the drug development for the treatment of MRSA infections is the phenylalanine tRNA synthetase alpha subunit that contains the binding site for the natural substrate. There is no crystal structure available for S. aureus PheRS, therefore comparative structure modeling is required to establish a putative 3D structure for the required enzyme enabling development of new inhibitors with greater selectivity. The S. aureus PheRS alpha subunit homology model was constructed using Molecular Operating Environment (MOE) software. Staphylococcus haemolyticus PheRS was the main template while Thermus thermophilus PheRS was utilised to predict the enzyme binding with tRNAphe. The model has been evaluated and compared with the main template through Ramachandran plots, Verify 3D and Protein Statistical Analysis (ProSA). The query protein active site was predicted from its sequence using a conservation analysis tool. Docking suitable ligands using MOE into the constructed model were used to assess the predicted active sites. The docked ligands involved the PheRS natural substrate (phenylalanine), phenylalanyl-adenylate and several described S. aureus PheRS inhibitors

    Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates

    Get PDF
    Aim: Identification of pathogenic clinical bacterial isolates is mainly dependent on phenotypic and genotypic characteristics of the microorganisms. These conventional methods are costive, time-consuming, and need special skills and training. An alternative, mass spectral (proteomics) analysis method for identification of clinical bacterial isolates has been recognized as a rapid, reliable, and economical method for identification. This study was aimed to evaluate and compare the performance, sensitivity and reliability of traditional bacteriology, phenotypic methods and matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in the identification of clinical Escherichia coli and Salmonella isolates recovered from chickens. Materials and Methods: A total of 110 samples (cloacal, liver, spleen, and/or gall bladder) were collected from apparently healthy and diseased chickens showing clinical signs as white chalky diarrhea, pasty vent, and decrease egg production as well as freshly dead chickens which showing postmortem lesions as enlarged liver with congestion and enlarged gall bladder from different poultry farms. Results: Depending on colonial characteristics and morphological characteristics, E. coli and Salmonella isolates were recovered and detected in only 42 and 35 samples, respectively. Biochemical identification using API 20E identification system revealed that the suspected E. coli isolates were 33 out of 42 of colonial and morphological identified E. coli isolates where Salmonella isolates were represented by 26 out of 35 of colonial and morphological identified Salmonella isolates. Serological identification of isolates revealed that the most predominant E. coli serotypes were O1 and O78 while the most predominant Salmonella serotype of Salmonella was Salmonella Pullorum. All E. coli and Salmonella isolates were examined using MALDI-TOF MS. In agreement with traditional identification, MADI-TOF MS identified all clinical bacterial samples with valid scores as E. coli and Salmonella isolates except two E. coli isolates recovered from apparently healthy and diseased birds, respectively, with recovery rate of 93.9% and 2 Salmonella isolates recovered from apparently healthy and dead birds, respectively, with recovery rate of 92.3%. Conclusion: Our study demonstrated that Bruker MALDI-TOF MS Biotyper is a reliable rapid and economic tool for the identification of Gram-negative bacteria especially E. coli and Salmonella which could be used as an alternative diagnostic tool for routine identification and differentiation of clinical isolates in the bacteriological laboratory. MALDI-TOF MS need more validation and verification and more study on the performance of direct colony and extraction methods to detect the most sensitive one and also need using more samples to detect sensitivity, reliability, and performance of this type of bacterial identification

    Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery

    Get PDF
    Purpose The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ( L -arginine and L -leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, L -leucine was significantly superior in enhancing the aerosolization performance ( L- arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 μg and MMAD 2.18 ± 0.35–2.98 ± 0.25 μm, L -leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 μg and MMAD 2.55 ± 0.03–3.68 ± 0.12 μm). Incorporating L -leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L -leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. Conclusion The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill &amp; Melinda Gates Foundation

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill &amp; Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute
    corecore