2,193 research outputs found
Lactic acid bacteria occurring during manufacture and ripening of Provolone del Monaco cheese: detection by different analytical approaches
Lactic acid bacteria occurring in Provolone del Monaco, an artisanal pasta filata cheese produced in Campania (Italy) from raw cows’ milk and without starter addition, were investigated by a combination of conventional and molecular approaches. The microbial community was monitored during a cheese-making process giving rise to a premium quality product. Streptococcus thermophilus and Streptococcus macedonicus prevailed during cheese manufacture and survived along nine months of ripening, together with enterococci and lactobacilli of the casei group, especially Lactobacillus rhamnosus. Phenotypic and genetic identification of 308 isolates largely reflected the results obtained by 16S rDNA sequencing analysis by polymerase chain reaction-denaturant gradient gel electrophoresis, with the significant exception of Lactobacillus fermentum and four Lactobacillus delbrueckii subspecies that were not detected by cultural methods. Each different analytical approach employed provided useful information. Their combination proved to be suitable to effectively describe the ecosystem of Provolone del Monaco cheese
NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological features of the study areas. The proposed approach introduces chronologically-constrained zones as geomorphological evidence for selecting deglaciated areas in the alpine and non-alpine belts. In the present study, the protected and low-anthropic-impacted areas of the Gran Paradiso Group (Italian Western Alps) were analysed using Landsat NDVI time series (1984–2022 CE). The obtained results highlighted a progressive greening even at a higher altitude, albeit not ubiquitous. The detected NDVI trends showed, moreover, how the local factors trigger the greening in low-elevation areas. Spectral reflectance showed a general decrease over time, evidencing the progressive colonisation of recently deglaciated surfaces. The results improved the discrimination between different greening rates in the deglaciated areas of the Alpine regions. The geomorphological-driven approach showed significant potential to support the comprehension of these processes, especially for fast-changing areas such as the high mountain regions
Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells
The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis
Oral Cannabidiol Prevents Allodynia and Neurological Dysfunctions in a Mouse Model of Mild Traumatic Brain Injury
Neurological dysfunctions are the most impactful and persistent consequences of traumatic brain injury (TBI). Indeed, previous reports suggest that an association between TBI and chronic pain syndromes, as well anxio-depressive behaviors, tends to be more common in patients with mild forms of TBI. At present, no effective treatment options are available for these symptoms. In the present study, we used a weight drop mild TBI mouse model to investigate the effect of a commercially available 10% Cannabidiol (CBD) oil on both the sensorial and neuropsychiatric dysfunctions associated with mild TBI through behavioral and biomolecular approaches. TBI mice developed chronic pain associated with anxious and aggressive behavior, followed by a late depressive-like behavior and impaired social interaction. Such behaviors were related with specific changes in neurotransmitters release at cortical levels. CBD oral treatment restored the behavioral alterations and partially normalized the cortical biochemical changes. In conclusion, our data show some of the brain modifications probably responsible for the behavioral phenotype associated with TBI and suggest the CBD as a pharmacological tool to improve neurological dysfunctions caused by the trauma
Development of a dso-market on flexibility services
BACKGROUND: Several of the currently used anticancer drugs may variably affect thyroid function, with impairment ranging from modified total but not free concentration of thyroid hormones to overt thyroid disease.
SUMMARY: Cytotoxic agents seem to alter thyroid function in a relatively small proportion of adult patients. Anticancer hormone drugs may mainly alter serum levels of thyroid hormone-binding proteins without clinically relevant thyroid dysfunction. Old immunomodulating drugs, such as interferon-α and interleukin-2, are known to induce variably high incidence of autoimmune thyroid dysfunction. Newer immune checkpoint inhibitors, such as anti-CTLA4 monoclonal antibodies, are responsible for a relatively low incidence of thyroiditis and may induce secondary hypothyroidism resulting from hypophysitis. Central hypothyroidism is a well-recognized side effect of bexarotene. Despite their inherent selectivity, tyrosine kinase inhibitors may cause high rates of thyroid dysfunction. Notably, thyroid toxicity seems to be restricted to tyrosine kinase inhibitors targeting key kinase-receptors in angiogenic pathways, but not other kinase-receptors (e.g., epidermal growth factor receptors family or c-KIT). In addition, a number of these agents may also increase the levothyroxine requirement in thyroidectomized patients.
CONCLUSIONS: The pathophysiology of thyroid toxicity induced by many anticancer agents is not fully clarified and for others it remains speculative. Thyroid dysfunction induced by anticancer agents is generally manageable and dose reduction or discontinuation of these agents is not required. The prognostic relevance of thyroid autoimmunity, overt and subclinical hypothyroidism induced by anticancer drugs, the value of thyroid hormone replacement in individuals with abnormal thyrotropin following anticancer systemic therapy, and the correct timing of replacement therapy in cancer patients need to be defined more accurately in well-powered prospective clinical trials
Towards a muon collider
A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
Towards a Muon Collider
A muon collider would enable the big jump ahead in energy reach that is
needed for a fruitful exploration of fundamental interactions. The challenges
of producing muon collisions at high luminosity and 10 TeV centre of mass
energy are being investigated by the recently-formed International Muon
Collider Collaboration. This Review summarises the status and the recent
advances on muon colliders design, physics and detector studies. The aim is to
provide a global perspective of the field and to outline directions for future
work.Comment: 118 pages, 103 figure
Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV
Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
- …