1,710 research outputs found

    A transition of atmospheric emissions of particles and gases from on-road heavy-duty trucks

    Get PDF
    The transition, in extent and characteristics, of atmospheric emissions caused by the modernization of the heavy-duty on-road fleet was studied utilizing roadside measurements. Emissions of particle number (PN), particle mass (PM), black carbon (BC), nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbon (HC), particle size distributions, and particle volatility were measured from 556 individual heavy-duty trucks (HDTs). Substantial reductions in PM, BC, NOx, CO, and to a lesser extent PN were observed from Euro III to Euro VI HDTs by 99 %, 98 %, 93 %, and 57 % for the average emission factors of PM, BC, NOx, and CO, respectively. Despite significant total reductions in NOx emissions, the fraction of NO2 in the NOx emissions increased continuously from Euro IV to Euro VI HDTs. Larger data scattering was evident for PN emissions in comparison to solid particle number (SPN) for Euro VI HDTs, indicating a highly variable fraction of volatile particle components. Particle size distributions of Euro III to enhanced environmentally friendly vehicle (EEV) HDTs were bimodal, whereas those of Euro VI HDTs were nucleation mode dominated. High emitters disproportionately contributed to a large fraction of the total emissions with the highest-emitting 10 % of HDTs in each pollutant category being responsible for 65 % of total PM, 70 % of total PN, and 44 % of total NOx emissions. Euro VI HDTs, which accounted for 53 % of total kilometres driven by Swedish HDTs, were estimated to only contribute to 2 %, 6 %, 12 %, and 47 % of PM, BC, NOx, and PN emissions, respectively. A shift to a fleet dominated by Euro VI HDTs would promote a transition of atmospheric emissions towards low PM, BC, NOx, and CO levels. Nonetheless, reducing PN, SPN, and NO2 emissions from Euro VI HDTs is still important to improve air quality in urban environments

    Asmase Regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage nonalcoholic steatohepatitis

    Get PDF
    Background & Aims: Acid sphingomyelinase (ASMase) is activated in nonalcoholic steatohepatitis (NASH). However, ASMase's contribution to NASH is poorly understood and limited to hepatic steatosis and glucose metabolism. Here we examined ASMase's role in high fat diet (HFD)-induced NASH. Methods: Autophagy, endoplasmic reticulum (ER) stress and lysosomal membrane permeabilization (LMP) were determined in ASMase-/- mice fed HFD. The impact of pharmacological ASMase inhibition on NASH was analyzed in wild type mice fed HFD. Results: ASMase deficiency determined resistance to HFD or methionine and choline deficient diet-mediated hepatic steatosis. ASMase-/- mice were resistant to HFD-induced hepatic ER stress, but sensitive to tunicamycin-mediated ER stress and steatosis, indicating selectivity in the resistance of ASMase-/- mice to ER stress. Autophagic flux determined in the presence of rapamycin and/or chloroquine was lower in primary mouse hepatocytes (PMH) from ASMase-/- mice and accompanied by increased p62 levels, suggesting autophagic impairment. Moreover, autophagy suppression by chloroquine and brefeldinA caused ER stress in PMH from ASMase+/+ mice but not ASMase-/- mice. ASMase-/- PMH exhibited increased lysosomal cholesterol loading, decreased LMP and apoptosis resistance induced by O-methyl-serine dodecylamide hydrochloride or palmitic acid, effects that were reversed by decreasing cholesterol levels by the oxysterol 25-hydroxycholesterol. In vivo pharmacological ASMase inhibition by amitriptyline, a widely used tricyclic antidepressant, protected wild type mice against HFD- induced hepatic steatosis, fibrosis, and liver damage, effects indicative of early-stage NASH. Conclusions: These findings underscore a critical role for ASMase in diet-induced NASH and suggest the potential of amitriptyline as a treatment for patients with NASH

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry

    Get PDF
    Abstract Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%?17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ~40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to b

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc(2) = 3.8 +/- 0.4 mu as. Folding in a distance measurement of 16.8(-0.7)(+0.8) gives a black hole mass of M = 6.5. 0.2 vertical bar(stat) +/- 0.7 vertical bar(sys) x 10(9) M-circle dot. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity

    First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole

    Get PDF
    We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions
    corecore