23 research outputs found

    Scientific Opinion on the public health hazards to be covered by inspection of meat from farmed game

    Get PDF
    Salmonella spp. in farmed wild boar and Toxoplasma gondii in farmed deer and farmed wild boar were ranked as a high priority for meat inspection. Trichinella spp. in wild boar was ranked as low priority due to current controls, which should be continued. For chemical hazards, all substances were ranked as medium or lower potential concern. More effective control of biological hazards could be achieved using an integrated farm to chilled carcass approach, including improved food chain information (FCI) and risk-based controls. Further studies are required on Salmonella spp. in farmed wild boar and T. gondii in farmed wild boar and farmed deer. If new information confirms a high risk to public health from meat from these species, setting targets at carcass level should be considered. Palpation and incision should be omitted, as it will not detect biological hazards considered to be a high priority for meat inspection while increasing the potential spread and cross-contamination of the carcasses with Salmonella. Palpation and/or incision may be applied where abnormalities have been detected but away from the slaughter line. However the elimination of routine palpation and incision would be detrimental for detecting tuberculosis. As farmed deer and farmed wild boar can act as tuberculosis reservoirs, any reduction in the detection, due to changes in the post-mortem inspection procedures, will have consequences for the overall surveillance of tuberculosis. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account FCI, which should be expanded to reflect the specific environmental conditions of the farms where the animals are reared, and the ranking of chemical substances, which should be regularly updated and include new hazards. Control programmes across the food chain, national residue control programmes, feed control and monitoring of environmental contaminants should be better integrated

    Dorsal CA1 lesions of the hippocampus impact mating tactics in prairie voles by shifting non-monogamous males’ use of space to resemble monogamous males

    Get PDF
    Alternative mating tactics within mating systems are characterized by discrete patterns of spatio-temporal overlap with same-and opposite-sex conspecifics and mating-relevant outcomes. Socially monogamous “residents” maintain relatively small home range sizes, have territories that almost exclusively overlap with their mating partners, and are more likely to produce offspring than non-bonded “wandering” conspecifics. Because mating tactics appear to be so closely tied to patterns of space use, differences in spatial cognitive abilities might differentially impact individual males’ decisions to adopt a particular mating tactic and/or how efficient they are within their chosen mating tactic. Yet few studies have considered how the hippocampus, a brain region important for encoding cognitive maps and for processing contextual information, might impact how individuals adopt mating tactics or the spatio-temporal behaviors closely associated with them. We assessed the impact of lesions to the dorsal CA1 (dCA1) region of the hippocampus on male prairie vole space use, reproductive success, and mating tactics in semi-natural outdoor field conditions. Interestingly, dCA1 lesions did not impact the proportion of males that adopted resident or wandering mating tactics, and dCA1 lesions did not impact a male’s ability to form a pair bond in the lab. In contrast, we found that lesioning the dCA1 shifted the home range size of reproductively successful and unsuccessful males. Furthermore, we found that patterns of space use among residents were unaffected by dCA1 lesions, whereas wanderers with dCA1 lesions showed pronounced reductions of their space use habits and resembled non-lesioned residents. Collectively, our study supports the hypothesis that wanderer male prairie voles rely on dCA1-mediated spatial cognition to navigate their world in a way that resident males do not. Such differences might have implications for how individuals efficiently attract and defend mates, obtain resources, defend territories, and outcompete rivals

    Computing spatially distributed sediment delivery ratios : Inferring functional sediment connectivity from repeat high-resolution Digital Elevation Models

    No full text
    High-resolution digital elevation models (DEMs) from repeat LiDAR or SfM surveys have become an important tool in process geomorphology. The spatial pattern of negative and positive changes of surface elevation on raster DEMs of difference (DoD) can be interpreted in terms of geomorphic processes, and has been used for morphological budgeting. We show how the application of flow routing algorithms and flow accumulation opens new opportunities for the analysis of DoD. By accumulating the values of the DoD along downslope flowpaths delineated on a DEM, these algorithms lend themselves to computing the net balance, i.e. sediment yield (SY), for the contributing area of each cell. Doing the same for the negative subset of the DoD yields a minimum estimate of erosion (E) within the contributing area. The division of SY by E yields (a maximum estimate of) the sediment delivery ratio (SDR), that is the proportion of material eroded within the contributing area of each cell that has been exported from that area. The resulting SDR is a spatially distributed measure of functional sediment connectivity. In this letter, we develop the computationally simple approach by means of an example DoD from a lateral moraine section in the Upper Kaunertal Valley, Austrian Central Alps. We also discuss advantages, assumptions and limitations, and outline potential applications to connectivity research using field-, laboratory-, and model-based DoD

    Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues.

    No full text
    Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome
    corecore