618 research outputs found

    Genome sequence of Burkholderia pseudomallei NCTC 13392

    Get PDF
    Here, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies

    Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae

    Get PDF
    The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation

    Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia

    Get PDF
    Background: Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A-G), which are produced by six species/Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. Results: Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants. Conclusions: This study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found.Peer reviewe

    The Current State of Performance Appraisal Research and Practice: Concerns, Directions, and Implications

    Get PDF
    On the surface, it is not readily apparent how some performance appraisal research issues inform performance appraisal practice. Because performance appraisal is an applied topic, it is useful to periodically consider the current state of performance research and its relation to performance appraisal practice. This review examines the performance appraisal literature published in both academic and practitioner outlets between 1985 and 1990, briefly discusses the current state of performance appraisal practice, highlights the juxtaposition of research and practice, and suggests directions for further research

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation

    Get PDF
    The biosynthesis of Pep5, a lanthionine-containing antimicrobial peptide, is directed by the 20-kbp plasmid pED503. We identified a 7.9-kbp DNA-fragment within this plasmid which covers the information for Pep5 synthesis in the homologous host Staphylococcus epidermidis 5 which has been cured of pED503. This fragment contained, in addition to the previously described structural gene pepA and the immunity gene pepl [Reis, M., Eschbach-Bludau, M., Iglesias-Wind, M. I., Kupke, T. & Sahl, H.-G. (1994) Appl. Env. Microbiol. 60, 2876–2883], a gene pepT coding for a translocator of the ABC transporter family, a gene pepP coding for a serine protease and two genes pepB and pepC coding for putative modification enzymes; the gene arrangement is pepTIAPBC. We analyzed the biosynthetic genes with respect to their function in Pep5 biosynthesis. Deletion of PepT reduced Pep5 production to about 10%, indicating that it can be partially replaced by other host-encoded translocators. Inactivation of PepP by site-directed mutagenesis of the active-site His residue resulted in production of incorrectly processed Pep5 fragments with strongly reduced antimicrobial activity. Deletion of pepB and pepC leads to accumulation of Pep5 prepeptide in the cells without excretion of processed peptide. A pepC-deletion clone did not excrete correctly matured Pep5 but it did produce fragments from which serine and threonine were absent. Only one of these fragments contained a single lanthionine residue out of three expected while the remaining, unmodified cysteine residues could be detected by reaction with Ellman's reagent. These results demonstrate that PepC is a thioether-forming protein and strongly suggest that PepB is responsible for dehydration of serine and threonin

    Design and psychometric analysis of the safety harness usability and comfort assessment tool (SH UCAT)

    Get PDF
    sections in 2022. The research steps included field interviews, an expert panel, and compiling the questionnaires for assessing the comfort and usability of the harness. The items of tools were designed based on the qualitative part of the research and review of the literature. The face and content validity of the instrument were assessed. Its reliability was also evaluated using the test-retest method. Results: Two tools were developed including a comfort questionnaire with 13 questions and a usability questionnaire with 10 questions. The Cronbach's alpha coefficients of these instruments were 0.83 and 0.79, respectively. Additionally, the content and face validity indices were 0.97 and 3.89 for the comfort questionnaire and 0.991 and 4 for the usability questionnaire, respectively. Conclusions: The designed tools showed appropriate validity and reliability and could be used to evaluate the comfort and usability of safety harnesses. On the other hand, the criteria used in the designed tools could be employed in user-centered harness designs. © 2023 The Author
    corecore