42 research outputs found

    Revisiting inconsistency in large pharmacogenomic studies

    Get PDF
    In 2013, we published a comparative analysis of mutation and gene expression profiles and drug sensitivity measurements for 15 drugs characterized in the 471 cancer cell lines screened in the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). While we found good concordance in gene expression profiles, there was substantial inconsistency in the drug responses reported by the GDSC and CCLE projects. We received extensive feedback on the comparisons that we performed. This feedback, along with the release of new data, prompted us to revisit our initial analysis. We present a new analysis using these expanded data, where we address the most significant suggestions for improvements on our published analysis - that targeted therapies and broad cytotoxic drugs should have been treated differently in assessing consistency, that consistency of both molecular profiles and drug sensitivity measurements should be compared across cell lines, and that the software analysis tools provided should have been easier to run, particularly as the GDSC and CCLE released additional data. Our re-analysis supports our previous finding that gene expression data are significantly more consistent than drug sensitivity measurements. Using new statistics to assess data consistency allowed identification of two broad effect drugs and three targeted drugs with moderate to good consistency in drug sensitivity data between GDSC and CCLE. For three other targeted drugs, there were not enough sensitive cell lines to assess the consistency of the pharmacological profiles. We found evidence of inconsistencies in pharmacological phenotypes for the remaining eight drugs. Overall, our findings suggest that the drug sensitivity data in GDSC and CCLE continue to present challenges for robust biomarker discovery. This re-analysis provides additional support for the argument that experimental standardization and validation of pharmacogenomic response will be necessary to advance the broad use of large pharmacogenomic screens

    Public data and open source tools for multi-assay genomic investigation of disease

    Get PDF
    Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Scoliosis among male high school students in Ahwaz

    No full text
    History and Objectives: Due to importance of scoliosis on body perception and their adverse side effects and in order to determine the its prevalence among high school students, the present study was undertaken among 11-15 year old male student in Ahwaz. Materials and Methods: A descriptive study on 1033 students by multi-stage random sampling was carried out. Suspected patients were selected and clinical investigations were performed on the basis of radiographic and orthopedic findings. Type of curvatures as to compensative and non-compensative and structural and non-structural were determined. Prevalence was determined in the sample and population as a whole. Results: Prevalence of scoliosis was 1.4 (CI=0.7-2.1) and structural compensative scoliosis were 86 and 71 respectively. Conclusion: Prevalence of scoliosis was in the sample under the present study was lower than the similar studies in other countries. Similar studies in other parts of the country and analytical investigations as to cause(s) of the disease are recommended

    PharmacoGx: an R package for analysis of large pharmacogenomic datasets

    No full text
    Pharmacogenomics holds great promise for the development of biomarkers of drug response and the design of new therapeutic options, which are key challenges in precision medicine. However, such data are scattered and lack standards for efficient access and analysis, consequently preventing the realization of the full potential of pharmacogenomics. To address these issues, we implemented PharmacoGx, an easy-to-use, open source package for integrative analysis of multiple pharmacogenomic datasets. We demonstrate the utility of our package in comparing large drug sensitivity datasets, such as the Genomics of Drug Sensitivity in Cancer and the Cancer Cell Line Encyclopedia. Moreover, we show how to use our package to easily perform Connectivity Map analysis. With increasing availability of drug-related data, our package will open new avenues of research for meta-analysis of pharmacogenomic data.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore