21 research outputs found

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Il poeta travestito : otto scritti su Svevo /

    No full text
    Includes bibliographical references and index

    La acreditación de asignaturas en la vida cotidiana escolar. Un estudio etnográfico en el contexto de la obligatoriedad de la Educación Media Superior

    Get PDF
    En este artículo presentamos los resultados de una investigación desarrollada entre septiembre de 2014 y julio de 2016 con el objetivo de indagar, desde una perspectiva etnográfica, cómo se configura la acreditación de asignaturas en la cotidianidad de un plantel (establecimiento educativo) del Colegio de Bachilleres2 de la Ciudad de México, aspecto central para la permanencia de los jóvenes en la escuela, ya que favorece procesos particulares de aprobación, reprobación y recuperación de materias. Esta problemática cobra relevancia en el contexto mexicano actual, dadas las transformaciones que se vienen produciendo en materia de políticas educativas–como la modificación del artículo 3º de la Constitución Política que estableció la obligatoriedad de la Educación Media Superior (EMS) a partir de 2012. También se ha extendido la obligatoriedad a la educación media completa en Chile, Argentina, Uruguay y Brasil, lo que podría estar expresando cierta “convergencia” de retórica y problemas en los discursos de las políticas (Lingard y Sellar, 2013) a nivel regional. Una de las metas educativas para el 2021 acordadas por los ministros de educación de la región en la XVIII Conferencia Iberoamericana de Educación “Juventud y desarrollo” es “universalizar la educación primaria y la secundaria básica y ampliar el acceso a la educación secundaria superior” (Organización de Estados Iberoamericanos, 2010: 151). Se está produciendo así un cambio –no sin tensiones– de definición respecto de la educación media superior, comenzando a concebirla como “parte constitutiva de la educación fundamental que todo ciudadano debiera poseer, y ya no como una situación excepcional o de privilegio (Bellei, 2012: 220) (cf. también Acedo y Opertti, 2012).Universidad Nacional de Rosario, Facultad de Humanidades y Artes, Centro de Estudios Antropológicos en Contextos Urbanos (CeaCu, FHyA, UNR). Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Universidad Autónoma de Entre Ríos, Facultad de Humanidades Artes y Ciencias Sociales (UADER, FHAyCS)Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados, Departamento de Investigaciones Educativas (IPN, CINVESTAV, DIE

    Simultaneous detection and photocatalysis performed on a 3D graphene/ZnO hybrid platform

    No full text
    The synergy between graphene foam (Gf) and ZnO nanoparticles (NPs) allows the detection of analytes at low conentrations, which can be subsequently photocatalyzed on the hybrid surface as well as in the liquid phase upon illumination with low-power UV-vis light-emitting diode (LED) lamps. Detection of methylene blue (MB) and bisphenol A (BPA) is monitored either by graphene-enhanced Raman scattering (GERS) or molecular doping/sensing upon analyte adsorption. Using GERS, we were able to detect concentrations as low as 0.3 ppm of MB, which remained adsorbed on the graphene surface after a photocatalytic conversion of 88% (total conversion). The photocatalysis performances of BPA and MB performed in the liquid phase were lower and corresponded to 73 and 33% as indicated by gas chromatography-mass spectrometry (GC/MS) and UV-vis, respectively. The kinetics of photocatalysis was fitted with a quasi-first-order reaction, and the apparent rate constant (kapp) was calculated according to the Langmuir-Hinshelwood model. The fastest kinetics was achieved with the hybrid platform named "Gf-ZnO400", which was thermally treated at high temperatures and with most of the Ni etched away. This is consistent with the excellent electronic interaction between ZnO and graphene foam as indicated by photoelectrochemistry analysis. We mainly employed Raman scattering and UV-vis spectroscopy analyses for detection and photocatalysis applications; however, we also used other complementary techniques such as focused ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance, GC/MS, and photoelectrochemistry to explore the synergetic behavior of these two nanomaterials. This work brings about new insights into the detection of analyte molecules followed by photocatalysis performed in the solid and liquid states.Fil: Messina, María Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Coustet, Marcos Eduardo. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ubogui, Joaquin Hernán. YPF - Tecnología; ArgentinaFil: Ruiz, Remigio. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saccone, Fabio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Dos Santos Claro, Paula Cecilia. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ibañez, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Graphene and Carbon Dots for Photoanodes with Enhanced Performance

    No full text
    The way graphene (GDs) and carbon dots (CDs) are synthesized and combined with TiO2determine their photoelectrochemical efficiency upon UV and visible LED lights. GDs and CDs are obtained by relatively unexplored top-down methods and conventional bottom-up methods, respectively. Top-down methods consist in the seedless growth of ZnO nanoparticles on the surface of graphene and the electrochemical cleavage of graphene grown on Ni foam. These carbon nanoparticles are later combined with TiO2by different approaches such as solution mixing, adsorption via APTES linkers, and drop-casting on an already formed TiO2film. Once the films are formed, they are placed into a photoelectrochemical Zahner cell and irradiated with LED lights at 450 and 360 nm. It is determined that CDs and GDs perform as efficient photosensitizers as demonstrated by an increase of ∼19- and 20-fold net photocurrent density when irradiated with UV and visible LED lights, respectively. We encountered that CDs are more sensitive upon visible light, whereas GDs promptly respond to UV light due to their difference in size-dependent band gap. Importantly, GDs obtained from seedless growth of ZnO are sensitive to both: UV and Vis LED irradiation. The combination of both nanocarbons would expand the absorption range and may be potentially used as cosensitizers toward the construction of more effective and advanced photoanodes.Fil: Messina, María Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Barrionuevo, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Coustet, Marcos Eduardo. Universidad Nacional de La Plata; ArgentinaFil: Kreuzer, Mark P.. YPF - Tecnología; ArgentinaFil: Saccone, Fabio Daniel. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dos Santos Claro, Paula Cecilia. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ibañez, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin
    corecore