17 research outputs found

    Longitudinal Changes in Fat and Lean Mass: Comparisons between 3D-Infrared and Dual-Energy X-ray Absorptiometry Scans in Athletes

    Get PDF
    International Journal of Exercise Science 15(4): 1587-1599, 2022. The low cost and portability of three-dimensional (3D) infrared body scanners make them an attractive tool for body composition measurement in athletes. The main purpose of this study was to compare total body fat percentage (BF%) and total lean mass (LM in kg), in a cohort of collegiate athletes, using a 3D infrared body scanner versus a dual energy x-ray absorptiometry (DXA) scanner. Phase I was a pre-season cross-sectional analysis of 61 (39 male) athletes while Phase II was a longitudinal subset analysis of 38 (27 male) student-athletes who returned to the laboratory for post-season scans (Post minus pre-season change). Both the 3D and DXA scans were performed within 20-minutes of one another in the same room, wearing the same clothing. Paired t-tests were used to compare the mean values (BF% and LM) between measurement devices with estimated effects size calculated using Cohen’s d. Data reported as mean±SD. Mean difference (DXA minus 3D) in LM were significantly higher using the 3D scan (5.84 ± 3.55kg; p \u3c 0.001; d = 0.90) compared to the DXA scan, while significantly underestimating BF% (-4.57 ± 4.67%; p \u3c 0.001; d = 1.6) in Phase I analyses. In Phase II analyses, significant differences in the change (post-season minus pre-season change) values were found between methods for LM (4.45 ± 5.04; p \u3c 0.001; d = 0.90), while BF% (-0.41 ± 2.06; p= 0.223; d = 0.2) showed no significant differences. In summary, the 3D and DXA scan values for LM and BF% were not interchangeable in cross-sectional nor longitudinal body composition analyses in collegiate athletes. Close agreement was only observed in longitudinal analyses of BF% and requires further validation with larger cohorts

    Adaptive filters and internal models: Multilevel description of cerebellar function

    Get PDF
    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections.Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically.We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure.This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. © 2012 Elsevier Ltd

    Is Exercise the Best Medicine during a COVID-19 Pandemic? Comment on Constandt, B.; Thibaut, E.; De Bosscher, V.; Scheerder, J.; Ricour, M.; Willem, A. Exercising in Times of Lockdown: An Analysis of the Impact of COVID-19 on Levels and Patterns of Exercise among Adults in Belgium. Int. J. Environ. Res. Public Health 2020, 17, 4144

    No full text
    From Constandt et al.’s survey of 13,515 Belgium respondents, regular physical activity can be successfully initiated and sustained during a lockdown, with appropriate social distancing measures. Documentation that 77% of highly active people and 58% of low active people exercised as much or more following the institution of a nationwide lockdown was impressive, given that the cases of COVID-19 were accelerating at that time. The Belgian government’s central promotion of exercise, to boost both the mental and physical health of the population, likely contributed to the health, tolerance, and ultimate success of lockdown. In this commentary, we wish to pose a follow-up query which highlights the potential detrimental effects of intense exercise (competition) performed without social distancing measures. The proposed graphical abstract elucidates these possible risks, in contrast to the favorable results outlined in Constandt et al.’s study

    Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial

    No full text
    Background Vitamin D promotes bone and muscle growth in non-athletes, suggesting supplementation may be ergogenic in athletes. Our primary aim was to determine if modest Vitamin D supplementation augments favorable body composition changes (increased bone and lean mass and decreased fat mass) and performance in collegiate basketball players following 12 weeks of standardized training. Methods Members of a men’s and women’s NCAA D1 Basketball team were recruited. Volunteers were randomized to receive either a weekly 4000 IU Vitamin D3 supplement (D3) or placebo (P) over 12 weeks of standardized pre-season strength training. Pre- and post-measurements included 1) serum 25-hydroxy vitamin D (25(OH)D); 2) body composition variables (total body lean, fat, and bone mass) using dual-energy X-ray absorptiometry (DXA) scans and 3) vertical jump test to assess peak power output. Dietary intake was assessed using Food Frequency questionnaires. Main outcome measures included changes (∆: post-intervention minus pre-intervention) in 25(OH)D, body composition, and performance. Results Eighteen of the 23 players completed the trial (8 females/10 males). Eight received the placebo (20 ± 1 years; 3 females) while ten received Vitamin D3 (20 ± 2 years; 5 females). Weekly Vitamin D3 supplementation induced non-significant increases (∆) in 25(OH)D (2.6 ± 7.2 vs. −3.5 ± 5.3 ng/mL; p = 0.06), total body bone mineral content (BMC) (73.1 ± 62.5 vs. 84.1 ± 46.5 g; p = 0.68), and total body lean mass (2803.9 ± 1655.4 vs. 4474.5 ± 11,389.8 g; p = 0.03), plus a non-significant change in body fat (−0.5 ± 0.8 vs. −1.1 ± 1.2%; p = 0.19) (Vitamin D3 vs. placebo supplementation groups, respectively). Pre 25(OH)D correlated with both Δ total fat mass (g) (r = 0.65; p = 0.003) and Δ total body fat% (r = 0.56; p = 0.02). No differences were noted in peak power output ∆ between the D3 vs. P group (−127.4 ± 335.4 vs. 50.9 ± 9 W; NS). Participants in the D3 group ingested significantly fewer total calories (−526.2 ± 583.9 vs. −10.0 ± 400 kcals; p = 0.02) than participants in the P group. Conclusions Modest (~517 IU/day) Vitamin D3 supplementation did not enhance favorable changes in total body composition or performance, over 3 months of training, in collegiate basketball players. Weight training provides a robust training stimulus for bone and lean mass accrual, which likely predominates over isolated supplement use with adequate caloric intakes

    Paradoxical Relationships between Serum 25(OH)D and Ferritin with Body Composition and Burnout: Variation by Sex and Sports Team

    No full text
    Adequate serum vitamin D and iron levels are thought to influence physical training adaptations and mood positively. The primary purpose of this prospective, observational study was to investigate relationships between serum 25-OH vitamin D/25(OH)D and serum ferritin levels with body composition and athlete burnout symptoms. Seventy-three collegiate athletes (female: n = 49; male: n = 24) from indoor (swimming, basketball) and outdoor (soccer, cross-country) sports were tested pre-season and post-season for serum 25(OH)D and serum ferritin (nutrient biomarkers) via venipuncture; body composition (total lean mass, bone mineral density/BMD, and % body fat) via dual energy X-ray absorptiometry (DXA) scans; and athlete burnout symptoms (post-season) via the athlete burnout questionnaire (ABQ). When male and female cohorts were combined, significant correlations (Pearson’s r) were noted between pre-season serum 25(OH)D versus the change (∆: post-season minus pre-season) in both BMD (r = −0.34; p = 0.0003) and % body fat (r = −0.28; p = 0.015). Serum ferritin ∆ was significantly associated with lean mass ∆ (r = −0.34; p = 0.003). For burnout symptoms, serum 25(OH)D ∆ significantly explained 20.6% of the variance for devaluation of the sport in the male cohort only. Across time, serum 25(OH)D levels decreased while serum ferritin levels increased, non-significantly, in both males and females. Relationships between nutrient biomarkers and body composition were opposite of physiological expectations

    Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems

    No full text
    1. This study analyzed the expression of muscarinic acetylcholine receptors (mAChRs) in the rat cultured skeletal muscle cells and their coupling to G protein, phospholipase C and adenylyl cyclase (AC). 2. Our results showed the presence of a homogeneous population of [(3)H]methyl-quinuclidinyl benzilate-binding sites in the membrane fraction from the rat cultured muscle (K(D)=0.4 nM, B(max)=8.9 fmol mg protein(−1)). Specific muscarinic binding sites were also detected in denervated diaphragm muscles from adult rats and in myoblasts isolated from newborn rats. 3. Activation of mAChRs with carbachol induced specific [(35)S]GTPγS binding to cultured muscle membranes and potentiated the forskolin-dependent stimulation of AC. These effects were totally inhibited by 0.1–1 μM atropine. 4. In addition, mAChRs were able to stimulate generation of diacylglycerol (DAG) in response to acetylcholine, carbachol or selective mAChR agonist oxotremorine-M. 5. The carbachol-dependent increase in DAG was inhibited in a concentration-dependent manner by mAChR antagonists atropine, pirenzepine and 4-DAMP mustard. 6. Finally, activation of these receptors was correlated with increased synthesis of acetylcholinesterase, via a PKC-dependent pathway. 7. Taken together, these results indicate that expression of mAChRs, coupled to G protein and distinct intracellular signaling systems, is a characteristic of noninnervated skeletal muscle cells and may be responsible for trophic influences of acetylcholine during formation of the neuromuscular synapse

    Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study

    No full text
    International audienceBACKGROUND: Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care. METHODS: We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221. FINDINGS: Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39-3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12-6·56], p=0·027), and long duration of mechanical ventilation (\textgreater14 days; OR 2·16 [1·14-4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (\textless1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26-2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53-3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03-2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0-72·8) versus 32·1% (27·7-36·7; p\textless0·0001). INTERPRETATION: This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19. FUNDING: Pfizer

    Drug-induced apoptosis in yeast

    Get PDF
    In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.This work was supported by a grant from FCT — Fundação para a Ciência e a Tecnologia, Portugal (POCI/BIA-BCM/57364/2004). B.A., A.S., A.M. and B.S.M. have fellowships from FCT (SFRH/BD/15317/2005, SFRH/BD/33125/2007, SFRH/BD/32464/2006 and SFRH/BI/ 15406/2005, respectively)
    corecore