126 research outputs found

    Adults’ ability to interpret covariation data presented in bar graphs depends on the context of the problem

    Get PDF
    The ability to correctly interpret data is an important skill in modern knowledge societies. The present study investigates adults’ ability to interpret covariation data presented in bar graphs. Drawing on previous findings that show that the problem context influences the interpretation of contingency tables (grounded and concrete problems are easier than abstract ones) and based on findings from the literature on motivated reasoning (confirming problems are easier than disconfirming ones), we present N = 111 undergraduates with bar graphs in either grounded (confirming or disconfirming) or abstract contexts. Our results show that only grounded problems in confirming contexts are easier than abstract ones; grounded problems in disconfirming contexts are more challenging than abstract ones. Overall, the interpretation of bar graphs is difficult: Even in our sample of educated college students, correct performance did not exceed 50%. Our results support earlier findings regarding the context dependency of data-interpretation skills, and they suggest that relatively minor task variations have an impact on reasoners’ interpretations of bar graphs

    Evaluation of Human Skin Reconstituted from Composite Grafts of Cultured Keratinocytes and Human Acellular Dermis Transplanted to Athymic Mice

    Get PDF
    This study evaluates the use of composite grafts of cultured human keratinocytes and de-epidermalized, acellular human dermis to close full-thickness wounds in athymic mice. Grafts were transplanted onto athymic mice and studied up to 8 wk. Graft take was excellent, with no instances of infection or graft loss. By 1 wk, the human keratinocytes had formed a stratified epidermis that was fused with mouse epithelium, and by 8 wk the grafts resembled human skin and could be freely moved over the mouse dorsum. Immunostaining for keratins 10 and 16 and for involucrin revealed an initial pattern of epithelial immaturity, which by 8 wk had normalized to that of mature unwounded epithelium. Mouse fibroblasts began to infiltrate the acellular dermis as early as 1 wk. By 8 wk fibroblasts had completely repopulated the dermis, and blood vessels were evident in the most superficial papillary projections, Dermal elements, such as rete ridges and elastin fibers, which were present in the starting dermis, persisted for the duration of the experiment. Grafts using keratinocytes from dark-skinned donors as opposed to light-skin donors had foci of pigmentation as early as 1 wk that progressed to homogenous pigmentation of the graft by 6 wk. These results indicate that melanocytes that persist in vitro are able to resume normal function in vivo. Our study demonstrates that composite grafts of cultured keratinocytes combined with acellular dermis are a useful approach for the closure of full-thickness wounds

    The Adaptive Gain Integrating Pixel Detector at the European XFEL

    Full text link
    The Adaptive Gain Integrating Pixel Detector (AGIPD) is an x-ray imager, custom designed for the European x-ray Free-Electron Laser (XFEL). It is a fast, low noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104^4 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.Comment: revised version after peer revie

    Development of an IS change reason - IS change type combination matrix

    Get PDF
    Firms change their information systems (IS) for various reasons, ranging from compliance with government regulations to the development of new capabilities. When making these changes a firm can choose between four different IS change types: IS introduction, IS extension, IS replacement, and IS merger. This paper proposes that change reasons and change types are interrelated, and that certain reason-type combinations are more likely than others to result in a successful IS change. To identify these combinations, an IS change reason–IS change type matrix is developed. While the matrix is created from prior IS research, we conducted a focus group study of IS professionals to further explore and refine the matrix. The findings from the focus group study reveal that some IS change reason–IS change type combinations are more appropriate than others to carry out the IS change project successfully. We also present three examples of IS change projects to illustrate the use and value of the matrix in practice

    Functional electrical stimulation driven by a brain–computer interface in acute and subacute stroke patients impacts beta power and long-range temporal correlation

    Get PDF
    Functional electrical stimulation (FES) is a standard rehabilitation approach applied by therapists to aid motor recovery in a paretic limb post-stroke. Information pertaining to the timing of a movement attempt can be obtained from changes in the power of oscillatory electrophysiological activity in motor cortical regions, derived from scalp electroencephalographic (EEG) recordings. The use of a brain–computer interface (BCI), to enable delivery of FES within a tight temporal window with a movement attempt detected in scalp EEG, is associated with greater motor recovery than conventional FES application in patients in the chronic phase post-stroke. We hypothesized that the heightened neural plasticity early post-stroke could further enhance motor recovery and that motor improvements would be accompanied by changes in the motor cortical sensorimotor rhythm after compared with before treatment. Here we assessed clinical outcome and changes in the sensorimotor rhythm in patients following subcortical stroke affecting the non-dominant hemisphere from a study comparing timing of FES delivery using a BCI, with a Sham group, receiving FES with no such temporal relationship. The BCI group showed greater clinical improvement following the treatment, particularly early post-stroke, and a greater decrease in beta oscillatory power and long-range temporal correlation over contralateral (ipsilesional) motor cortex. The electrophysiological changes are consistent with a reduction in compensatory processes and a transition towards a subcritical state when movement is triggered at the time of movement detection based on motor cortical oscillations

    Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function

    Get PDF
    There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology

    Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Get PDF
    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution

    Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    Get PDF
    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    Phosphoserine Aminotransferase1 Is Part of the Phosphorylated Pathways for Serine Biosynthesis and Essential for Light and Sugar-Dependent Growth Promotion

    Get PDF
    The phosphorylated pathway of serine biosynthesis represents an important pathway in plants. The pathway consist of three reactions catalyzed by the phosphoglycerate dehydrogenase, the phosphoserine aminotransferase and the phosphoserine phosphatase, and the genes encoding for all enzymes of the pathway have been identified. Previously, the importance of the phosphoglycerate dehydrogenase and phosphoserine phosphatase for plant metabolism and development has been shown, but due to the lack of T-DNA insertion mutants, a physiological characterization of the phosphoserine aminotransferase is still missing. Hence, we generated silencing lines specifically down-regulated in the expression of the major PSAT1 gene. The morphological characterization of the obtained PSAT1-silenced lines revealed a strong inhibition of shoot and root growth. In addition, these lines are hypersensitive to the inhibition of the photorespiratory serine biosynthesis, when growing the plants at elevated CO2. Metabolic analysis of PSAT1-silenced lines, showed a strong accumulation of certain amino acids, most likely due to an enhanced ammonium assimilation. Furthermore, phenotypic analysis under low and high-light conditions and in the presence of sucrose revealed, that the phosphorylated pathway of serine biosynthesis is essential for light and sugar-dependent growth promotion in plants
    corecore