43 research outputs found

    DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY

    Get PDF
    We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t)∝(t – t 0) n ) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure (~30, 000 km s–1 derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M ☉ and a large ((5-10) × 1051 erg) kinetic energy, the later being close to the regime of GRB-SN properties

    TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group

    Get PDF
    Exoplanets can evolve significantly between birth and maturity as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<<1 Gyr) offer the opportunity to probe these sculpting processes. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M=0.99±0.03M_*=0.99\pm0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23\tau=414\pm23 Myr). Based on the TESS light curve and updated stellar parameters, the planet radii are 2.15±0.10R2.15\pm0.10R_\oplus and 2.67±0.12R2.67\pm0.12R_\oplus, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than abut 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation

    Identifying priority healthcare trainings in frozen conflict situations: The case of Nagorno Karabagh

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Health care in post-war situations, where the system's human and fixed capital are depleted, is challenging. The addition of a frozen conflict situation, where international recognition of boundaries and authorities are lacking, introduces further complexities.</p> <p>Case description</p> <p>Nagorno Karabagh (NK) is an ethnically Armenian territory locked within post-Soviet Azerbaijan and one such frozen conflict situation. This article highlights the use of evidence-based practice and community engagement to determine priority areas for health care training in NK. Drawing on the precepts of APEXPH (Assessment Protocol for Excellence in Public Health) and MAPP (Mobilizing for Action through Planning and Partnerships), this first-of-its-kind assessment in NK relied on in-depth interviews and focus group discussions supplemented with expert assessments and field observations. Training options were evaluated against a series of ethical and pragmatic principles.</p> <p>Discussion and Evaluation</p> <p>A unique factor among the ethical and pragmatic considerations when prioritizing among alternatives was NK's ambiguous political status and consequent sponsor constraints. Training priorities differed across the region and by type of provider, but consensus prioritization emerged for first aid, clinical Integrated Management of Childhood Illnesses, and Adult Disease Management. These priorities were then incorporated into the training programs funded by the sponsor.</p> <p>Conclusions</p> <p>Programming responsive to both the evidence-base and stakeholder priorities is always desirable and provides a foundation for long-term planning and response. In frozen conflict, low resource settings, such an approach is critical to balancing the community's immediate humanitarian needs with sponsor concerns and constraints.</p

    Toi-1235 b: A keystone super-earth for testing radius valley emergence models around early m dwarfs

    Get PDF
    Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally-driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/non-rocky transition in period-radius space. Here we present the confirmation of TOI-1235 b (P=3.44P=3.44 days, rp=1.7380.076+0.087r_p=1.738^{+0.087}_{-0.076} R_{\oplus}), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/non-rocky transition around early M dwarfs (Rs=0.630±0.015R_s=0.630\pm 0.015 R_{\odot}, Ms=0.640±0.016M_s=0.640\pm 0.016 M_{\odot}). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high-resolution imaging, and a set of 38 precise radial-velocities from HARPS-N and HIRES. We measure a planet mass of 6.910.85+0.756.91^{+0.75}_{-0.85} M_{\oplus} which implies an iron core mass fraction of 2012+1520^{+15}_{-12}% in the absence of a gaseous envelope. The bulk composition of TOI-1235 b is therefore consistent with being Earth-like and we constrain a H/He envelope mass fraction to be <0.5<0.5% at 90% confidence. Our results are consistent with model predictions from thermally-driven atmospheric mass loss but not with gas-poor formation, which suggests that the former class of processes remain efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically-determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.80.8+0.9P=21.8^{+0.9}_{-0.8} days, mpsini=13.05.3+3.8m_p\sin{i}=13.0^{+3.8}_{-5.3} M_{\oplus}) that cannot be firmly ruled out by our data

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds

    No full text
    Carbon–carbon bond formation is the basis for the biogenesis of nature’s essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C–C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C–C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon–carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

    Synthesis of alpha-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases

    Get PDF
    Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP and PBA, respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide (PBP) and pyridine-2-carboxylic acid(2-formyl-phenyl)-amide (PBA) were readily prepared from picolinic acid and o-aminobenzophenone or picolinic acid and methyl o-anthranilate, respectively. The structure of 1 was established by X-ray crystallography. Complexes 1 and 3 were found to undergo C-alkylation with alkyl halides under PTC conditions in the presence of β-naphthol or benzyltriethylammonium bromide as catalysts to give mono- and bis-alkylated products, respectively. Decomposition of the complexes with aqueous HCl under mild conditions gave the required amino acids, and PBP and PBA were recovered. Alkylation of 1 with highly reactive alkyl halides, carried out under the PTC conditions in the presence of 10% mol of (S)- or (R)-2-hydroxy-2'-amino-1,1'-binaphthyl (NOBIN) and/or its N-acyl derivatives and by (S)- or (R)-2-hydroxy-8'-amino-1,1'-binaphthyl (iso-NOBIN) and its N-acyl derivatives, respectively, gave rise to α-amino acids with high enantioselectivities (90-98.5% ee) in good-to-excellent chemical yields at room temperature within several minutes. An unusually large positive nonlinear effect was observed in these reactions. The Michael addition of acrylic derivatives 37 to 1 was conducted under similar conditions with up to 96% ee. The 1H NMR and IR spectra of a mixture of the sodium salt of NOBIN and 1 indicated formation of a complex between the two components. Implications of the association and self-association of NOBIN for the observed sense of asymmetric induction and nonlinear effects are discussed
    corecore