20 research outputs found

    A phase 1 trial of the safety, tolerability and biological effects of intravenous Enadenotucirev, a novel oncolytic virus, in combination with chemoradiotherapy in locally advanced rectal cancer (CEDAR)

    Get PDF
    Background: Chemoradiotherapy remains the standard of care for locally advanced rectal cancer. Efforts to intensify treatment and increase response rates have yet to yield practice changing results due to increased toxicity and/or absence of increased radiosensitization. Enadenotucirev (EnAd) is a tumour selective, oncolytic adenovirus which can be given intravenously. Pre-clinical evidence of synergy with radiation warrants further clinical testing and assessment of safety with radiation. Methods: Eligibility include histology confirmed locally advanced rectal cancer that require chemoradiation. The trial will use a Time-to-Event Continual Reassessment Model-based (TiTE-CRM) approach using toxicity and efficacy as co-primary endpoints to recommend the optimal dose and treatment schedule 30 patients will be recruited. Secondary endpoints include pathological complete response the neoadjuvant rectal score. A translational program will be based on a mandatory biopsy during the second week of treatment for ‘proof-of-concept’ and exploration of mechanism. The trial opened to recruitment in July 2019, at an expected rate of 1 per month for up to 4 years. Discussion: Chemoradiation with Enadenotucirev as a radiosensitiser in locally Advanced Rectal cancer (CEDAR) is a prospective multicentre study testing a new paradigm in radiosensitization in rectal cancer. The unique ability of EnAd to selectively infect tumour cells following intravenous delivery is an exciting opportunity with a clear translational goal. The novel statistical design will make efficient use of both toxicity and efficacy data to inform subsequent studies. Trial registration: ClinicalTrial.gov, NCT03916510. Registered 16th April 2019

    Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    Get PDF
    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI

    Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs

    Get PDF
    The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies

    Protective Mechanisms for Depression among Racial/Ethnic Minority Youth: Empirical Findings, Issues, and Recommendations

    Full text link
    We (1) review empirical studies that report findings regarding putative protective mechanisms when exposed to risk of depression in African American and Hispanic adolescents; (2) identify key protective mechanisms for different risk contexts that garner empirical support; (3) synthesize the mechanisms identified as protective against depression among racial/ethnic minority adolescents; and (4) discuss improved methods for advancing understanding of resilience against depression in minority youth. The studies were selected from PsycINFO searches that met the following inclusion criteria: participants between 12 and 21 years of age, inclusions of racial/ethnic minority members, examining protection through an interaction with a risk factor, and outcome measures of depression, depressed mood, or depressive symptomatology. We found 39 eligible studies; 13 of which included multiple racial/ethnic groups. The following were supported as protective mechanisms, at least preliminarily, for at least one racial/ethnic group and in at least one risk context: employment, extracurricular activities, father–adolescent closeness, familism, maternal support, attending predominately minority schools, neighborhood composition, non-parent support, parental inductive reasoning, religiosity, self-esteem, social activities, and positive early teacher relationships. To investigate protective mechanisms more comprehensively and accurately across individual, social, and community levels of influence, we recommend incorporating multilevel modeling or multilevel growth curve analyses and large diverse samples

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era

    Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices

    No full text
    Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of visual cortex so that the location of an important object is associated with higher activation levels. While single-unit recording studies have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size
    corecore