77 research outputs found

    Numerical simulation of heat transfer to separation tio(2)/water nanofluids flow in an asymmetric abrupt expansion

    Get PDF
    Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT) is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water

    Increase in Convective Heat Transfer over A Backward-Facing Step Immersed in A Water-Based Tio2 Nanofluid

    Get PDF
    Investigation of flow separation and reattachment of 0.2% water-based TiO2 nanofluid in an annular suddenly expanding pipe is presented in this paper. Such flows occur in various engineering and heat transfer applications. A computational fluid dynamics package (FLUENT) is used to study turbulent nanofluid flow in this research. Only a quarter of an annular pipe was investigated and simulated because of its symmetrical geometry. Standard k–ε second-order implicit, pressure based-solver equations are applied. Reynolds numbers between 17,050 and 44,545, step height ratio of 1.82, and a constant heat flux of 49,050 W/m2 were utilized in simulation. The numerical simulation results show that increase in the Reynolds number leads to an increase of the heat transfer coefficient and of the Nusselt number. Moreover, the surface temperature dropped to its lowest value after the expansion and then gradually increased along the pipe. Finally, the chaotic movement and high thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid

    Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    Get PDF
    Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L−1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution

    Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces

    Get PDF
    An experimental setup of double pipe heat exchanger fouling test rig was built to investigate the mineral scale deposition on different heat exchanger pipe surfaces. Progressive fouling deposition on different material surfaces under the similar solution conditions were observed and analyzed. Measurable data on the progressive build-up of scale deposits, deposition rate, as well as the composition and crystal morphology of the deposits were studied after each experimental run by analyzing the deposited scale on the test pipes. In this research the artificial calcium carbonate deposit on different material surfaces is considered as it is one of the major constituents of the most scales found in heat exchanging equipment. Fouling on different smooth test pipes were investigated in the centrally located larger concentric pipe heat exchanger. Uniform flow condition near the pipe surface was maintained by constant flow rate throughout the system. The calcium carbonate deposition rates on five different metal surfaces (Stainless steel 316, brass, copper, aluminium and carbon steel) were investigated. The results illustrated an upward trend for fouling rate with time on the tested specimens. The deposition on the surfaces showed a linear growth with the enhancement of thermal conductivity of the metals. However, deposition on carbon steel metal surfaces did not follow the typical linear trend of thermal conductivity over deposition as its surface was altered by corrosion effects. In addition, temperature, velocity, and concentration effects on fouling deposition were investigated on the SS316 metal surface. It is noted that the fouling deposition increases with the increase of temperature and concentration due to enhanced deposition potential whereas reduces due to the increase of velocity which enhances shear stress. © 2017 Elsevier B.V

    Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.</p> <p>Methods</p> <p>The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.</p> <p>For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.</p> <p>Results</p> <p>Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.</p> <p>Conclusion</p> <p>The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.</p

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation
    corecore