816 research outputs found

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests

    Using Evolutionary Algorithms for Fitting High-Dimensional Models to Neuronal Data

    Get PDF
    In the study of neurosciences, and of complex biological systems in general, there is frequently a need to fit mathematical models with large numbers of parameters to highly complex datasets. Here we consider algorithms of two different classes, gradient following (GF) methods and evolutionary algorithms (EA) and examine their performance in fitting a 9-parameter model of a filter-based visual neuron to real data recorded from a sample of 107 neurons in macaque primary visual cortex (V1). Although the GF method converged very rapidly on a solution, it was highly susceptible to the effects of local minima in the error surface and produced relatively poor fits unless the initial estimates of the parameters were already very good. Conversely, although the EA required many more iterations of evaluating the model neuron’s response to a series of stimuli, it ultimately found better solutions in nearly all cases and its performance was independent of the starting parameters of the model. Thus, although the fitting process was lengthy in terms of processing time, the relative lack of human intervention in the evolutionary algorithm, and its ability ultimately to generate model fits that could be trusted as being close to optimal, made it far superior in this particular application than the gradient following methods. This is likely to be the case in many further complex systems, as are often found in neuroscience

    A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein

    Get PDF
    © 2006 Davids et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The definitive version was published in PLoS ONE 1 (2006): e44, doi:10.1371/journal.pone.0000044.Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, “HCNCp” (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many “CxxC” tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple “CxC” motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing ≥20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine candidates, and subjects for further research into Giardia biology

    A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naĂŻve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial

    Get PDF
    Objectives: To compare efficacy and safety of ixekizumab (IXE) to adalimumab (ADA) in biological disease-modifying antirheumatic drug-naïve patients with both active psoriatic arthritis (PsA) and skin disease and inadequate response to conventional synthetic disease-modifying antirheumatic drug (csDMARDs). Methods: Patients with active PsA were randomised (1:1) to approved dosing of IXE or ADA in an open-label, head-to-head, blinded assessor clinical trial. The primary objective was to evaluate whether IXE was superior to ADA at week 24 for simultaneous achievement of a ≥50% improvement from baseline in the American College of Rheumatology criteria (ACR50) and a 100% improvement from baseline in the Psoriasis Area and Severity Index (PASI100). Major secondary objectives, also at week 24, were to evaluate whether IXE was: (1) non-inferior to ADA for achievement of ACR50 and (2) superior to ADA for PASI100 response. Additional PsA, skin, treat-to-target and quality-of-life outcome measures were assessed at week 24. Results: The primary efficacy endpoint was met (IXE: 36%, ADA: 28%; p=0.036). IXE was non-inferior for ACR50 response (IXE: 51%, ADA: 47%; treatment difference: 3.9%) and superior for PASI100 response (IXE: 60%, ADA: 47%; p=0.001). IXE had greater response versus ADA in additional PsA, skin, nail, treat-to-target and quality-of-life outcomes. Serious adverse events were reported in 8.5% (ADA) and 3.5% (IXE) of patients. Conclusions: IXE was superior to ADA in achievement of simultaneous improvement of joint and skin disease (ACR50 and PASI100) in patients with PsA and inadequate response to csDMARDs. Safety and tolerability for both biologicals were aligned with established safety profiles

    Draft Genome Sequencing of Giardia intestinalis Assemblage B Isolate GS: Is Human Giardiasis Caused by Two Different Species?

    Get PDF
    Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16× coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species

    Novel Allelic Variants in the Canine Cyclooxgenase-2 (Cox-2) Promoter Are Associated with Renal Dysplasia in Dogs

    Get PDF
    Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore