82 research outputs found

    Genetic and social contributions to sex differences in lifespan in Drosophila serrata

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: All data are publicly available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.jdfn2z3cqSex differences in lifespan remain an intriguing puzzle in evolutionary biology. While explanations range from sex differences in selection to sex differences in the expression of recessive lifespan-altering mutations (via X-linkage), little consensus has been reached. One unresolved issue is the extent to which genetic influences on lifespan dimorphism are modulated by the environment. For example, studies have shown that sex differences in lifespan can either increase or decrease depending upon the social environment. Here, we took an experimental approach, manipulating multiple axes of the social environment across inbred long- and short-lived genotypes and their reciprocal F1s in the fly Drosophila serrata. Our results reveal strong genetic effects and subtle yet significant genotype-by-environment interactions for male and female lifespan, specifically due to both population density and mating status. Further, our data do not support the idea that unconditional expression of deleterious X-linked recessive alleles in heterogametic males accounts for lower male lifespan

    Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Good genetic progress for pig reproduction traits has been achieved using a quantitative genetics-based multi-trait BLUP evaluation system. At present, whole-genome single nucleotide polymorphisms (SNP) panels provide a new tool for pig selection. The purpose of this study was to identify SNP associated with reproduction traits in the Finnish Landrace pig breed using the Illumina PorcineSNP60 BeadChip.</p> <p>Methods</p> <p>Association of each SNP with different traits was tested with a weighted linear model, using SNP genotype as a covariate and animal as a random variable. Deregressed estimated breeding values of the progeny tested boars were used as the dependent variable and weights were based on their reliabilities. Statistical significance of the associations was based on Bonferroni-corrected <it>P</it>-values.</p> <p>Results</p> <p>Deregressed estimated breeding values were available for 328 genotyped boars. Of the 62 163 SNP in the chip, 57 868 SNP had a call rate > 0.9 and 7 632 SNP were monomorphic. Statistically significant results (<it>P</it>-value < 2.0E-06) were obtained for total number of piglets born in first and later parities and piglet mortality between birth and weaning in later parity, and suggestive associations (<it>P</it>-value < 4.0E-06) for piglet mortality between birth and weaning in first parity, number of stillborn piglets in later parity, first farrowing interval and second farrowing interval. Two of the statistically significant regions for total number of piglets born in first and later parities are located on chromosome 9 around 95 and 79 Mb. The estimated SNP effect in these regions was approximately one piglet between the two homozygote classes. By combining the two most significant SNP in these regions, favourable double homozygote animals are expected to have 1.3 piglets (<it>P</it>-value = 1.69E-08) more than unfavourable double homozygote animals. A region on chromosome 9 (66 Mb) was statistically significant for piglet mortality between birth and weaning in later parity (0.44 piglets between homozygotes, <it>P</it>-value = 6.94E-08).</p> <p>Conclusions</p> <p>Three separate regions on chromosome 9 gave significant results for litter size and pig mortality. The frequencies of favourable alleles of the significant SNP are moderate in the Finnish Landrace population and these SNP are thus valuable candidates for possible marker-assisted selection.</p

    The Antiquity and Evolutionary History of Social Behavior in Bees

    Get PDF
    A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives

    A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cassava (<it>Manihot esculenta </it>Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers.</p> <p>Results</p> <p>The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. <it>CN08R1</it>from 2008 at Rayong, <it>CN09R1</it>and <it>CN09R2 </it>from 2009 at Rayong, and <it>CN09L1 </it>and <it>CN09L2 </it>from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, <it>CN09R1 </it>was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%.</p> <p>Conclusions</p> <p>Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.</p

    Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding

    Get PDF
    Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no “best phenotype” as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models

    The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket

    Get PDF
    A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations

    Molecular Approach to the Identification of Fish in the South China Sea

    Get PDF
    BACKGROUND: DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species. CONCLUSIONS/SIGNIFICANCE: The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy

    Run-Off Replication of Host-Adaptability Genes Is Associated with Gene Transfer Agents in the Genome of Mouse-Infecting Bartonella grahamii

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella

    Effective health care for older people living and dying in care homes: A realist review

    Get PDF
    Background: Care home residents in England have variable access to health care services. There is currently no coherent policy or consensus about the best arrangements to meet these needs. The purpose of this review was to explore the evidence for how different service delivery models for care home residents support and/or improve wellbeing and health-related outcomes in older people living and dying in care homes. Methods: We conceptualised models of health care provision to care homes as complex interventions. We used a realist review approach to develop a preliminary understanding of what supported good health care provision to care homes. We completed a scoping of the literature and interviewed National Health Service and Local Authority commissioners, providers of services to care homes, representatives from the Regulator, care home managers, residents and their families. We used these data to develop theoretical propositions to be tested in the literature to explain why an intervention may be effective in some situations and not others. We searched electronic databases and related grey literature. Finally the findings were reviewed with an external advisory group. Results: Strategies that support and sustain relational working between care home staff and visiting health care professionals explained the observed differences in how health care interventions were accepted and embedded into care home practice. Actions that encouraged visiting health care professionals and care home staff jointly to identify, plan and implement care home appropriate protocols for care, when supported by ongoing facilitation from visiting clinicians, were important. Contextual factors such as financial incentives or sanctions, agreed protocols, clinical expertise and structured approaches to assessment and care planning could support relational working to occur, but of themselves appeared insufficient to achieve change. Conclusion: How relational working is structured between health and care home staff is key to whether health service interventions achieve health related outcomes for residents and their respective organisations. The belief that either paying clinicians to do more in care homes and/or investing in training of care home staff is sufficient for better outcomes was not supported.This research was funded by National Institute of Health Research Health Service Delivery and Research programme (HSDR 11/021/02)

    Sex-specific Trans-regulatory Variation on the Drosophila melanogaster X Chromosome

    Get PDF
    The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change
    corecore