46 research outputs found

    Exploring or Avoiding Novel Food Resources? The Novelty Conflict in an Invasive Bird

    Get PDF
    For an animal invading a novel region, the ability to develop new behaviors should facilitate the use of novel food resources and hence increase its survival in the new environment. However, the need to explore new resources may entail costs such as exposing the animal to unfamiliar predators. These two opposing forces result in an exploration-avoidance conflict, which can be expected to interfere with the acquisition of new resources. However, its consequences should be less dramatic in highly urbanized environments where new food opportunities are common and predation risk is low. We tested this hypothesis experimentally by presenting three foraging tasks to introduced common mynas (Acridotheres tristis) from environments with low and high urbanization levels from Australia. Individuals from the highly urbanized environments, where mynas are both more opportunistic when foraging and less fearful to predators, resolved a technical task faster than those from less urbanized environments. These differences did not reflect innovative ‘personalities’ and were not confounded by sex, morphology or motivational state. Rather, the principal factors underlying differences in mynas' problem-solving ability were neophobic-neophilic responses, which varied across habitats. Thus, mynas seem to modulate their problem-solving ability according to the benefits and costs of innovating in their particular habitat, which may help us understand the great success of the species in highly urbanized environments

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Evolutionary signals of selection on cognition from the great tit genome and methylome

    Get PDF
    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species

    The reach of gene–culture coevolution in animals

    Get PDF
    Culture (behaviour based on socially transmitted information) is present in diverse animal species, yet how it interacts with genetic evolution remains largely unexplored. Here, we review the evidence for gene–culture coevolution in animals, especially birds, cetaceans and primates. We describe how culture can relax or intensify selection under different circumstances, create new selection pressures by changing ecology or behaviour, and favour adaptations, including in other species. Finally, we illustrate how, through culturally mediated migration and assortative mating, culture can shape population genetic structure and diversity. This evidence suggests strongly that animal culture plays an important evolutionary role, and we encourage explicit analyses of gene–culture coevolution in nature.Peer reviewe
    corecore