46 research outputs found
Environmental quality determines finder-joiner dynamics in socially foraging three-spined sticklebacks (Gasterosteus aculeatus)
Exploring or Avoiding Novel Food Resources? The Novelty Conflict in an Invasive Bird
For an animal invading a novel region, the ability to develop new behaviors should facilitate the use of novel food resources and hence increase its survival in the new environment. However, the need to explore new resources may entail costs such as exposing the animal to unfamiliar predators. These two opposing forces result in an exploration-avoidance conflict, which can be expected to interfere with the acquisition of new resources. However, its consequences should be less dramatic in highly urbanized environments where new food opportunities are common and predation risk is low. We tested this hypothesis experimentally by presenting three foraging tasks to introduced common mynas (Acridotheres tristis) from environments with low and high urbanization levels from Australia. Individuals from the highly urbanized environments, where mynas are both more opportunistic when foraging and less fearful to predators, resolved a technical task faster than those from less urbanized environments. These differences did not reflect innovative ‘personalities’ and were not confounded by sex, morphology or motivational state. Rather, the principal factors underlying differences in mynas' problem-solving ability were neophobic-neophilic responses, which varied across habitats. Thus, mynas seem to modulate their problem-solving ability according to the benefits and costs of innovating in their particular habitat, which may help us understand the great success of the species in highly urbanized environments
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Evolutionary signals of selection on cognition from the great tit genome and methylome
For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species
Explorative Learning and Functional Inferences on a Five-Step Means-Means-End Problem in Goffin’s Cockatoos (Cacatua goffini)
The reach of gene–culture coevolution in animals
Culture (behaviour based on socially transmitted information) is present in diverse animal species, yet how it interacts with genetic evolution remains largely unexplored. Here, we review the evidence for gene–culture coevolution in animals, especially birds, cetaceans and primates. We describe how culture can relax or intensify selection under different circumstances, create new selection pressures by changing ecology or behaviour, and favour adaptations, including in other species. Finally, we illustrate how, through culturally mediated migration and assortative mating, culture can shape population genetic structure and diversity. This evidence suggests strongly that animal culture plays an important evolutionary role, and we encourage explicit analyses of gene–culture coevolution in nature.Peer reviewe
