239 research outputs found

    Development of a novel cell encapsulation system based on natural origin polymers for tissue engineering applications

    Get PDF
    Cells microencapsulated in biocompatible semi-permeable polymeric membranes are effective as cell delivery systems while protecting the host against immune responses. In this study, cell encapsulation membranes were prepared based on carrageenan and alginate, two natural cationic polymers. Different formulations/conditions were explored to optimize the microcapsules which were characterized with respect to their morphology, mechanical stability, and cytotoxicity. Spherical-shaped microcapsules were obtained from all the polymeric systems. The iota-carrageenan/sodium alginate microcapsules exhibited the best stability and permeability, and therefore, these were selected for the cell encapsulation. These capsules provided an environment that supported cell proliferation and have the potential for tissue engineering as well as other cell-based therapy applications.One of the authors (SML) acknowledges the support of the Programme Alssan-the European Union Programme of High Level Scholarships for Latin America (scholarship no. E04M041362CO). This work was partially supported by the European STREP HIPPOCRATES (NMP3-CT-2003-505758) and by the Fundacao para a Ciencia e Tecnologia (project PTDC/QUI/68804/2006) and carried out under the scope of European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Effects of starch/polycaprolactone-based blends for spinal cord injury regeneration in neurons/glial cells viability and proliferation

    Get PDF
    Spinal cord injury (SCI) leads to drastic alterations on the quality of life of afflicted individuals. With the advent of Tissue Engineering and Regenerative Medicine where approaches combining biomaterials, cells and growth factors are used, one can envisage novel strategies that can adequately tackle this problem. The objective of this study was to evaluate a blend of starch with poly(ε-caprolactone) (SPCL) aimed to be used for the development of scaffolds spinal cord injury (SCI) repair. SPCL linear parallel filaments were deposited on polystyrene coverslips and assays were carried out using primary cultures of hippocampal neurons and glial cells. Light and fluorescence microscopy observations revealed that both cell populations were not negatively affected by the SPCL-based biomaterial. MTS and total protein quantification indicated that both cell viability and proliferation rates were similar to controls. Both neurons and astrocytes occasionally contacted the surface of SPCL filaments through their dendrites and cytoplasmatic processes, respectively, while microglial cells were unable to do so. Using single cell [Ca2+ ]i imaging, hippocampal neurons were observed growing within the patterned channels and were functional as assessed by the response to a 30 mM KCl stimulus. The present data demonstrated that SPCL-based blends are potentially suitable for the development of scaffolds in SCI regenerative medicine.Portuguese Foundation for Science and Technology through funds from POCTI and/or FEDER programs (Funding to ICVS, 3B's Research Group and post doctoral fellowship to A.J. Salgado-SFRH/BPD/17595/2004)

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure

    Combinatorial activity of flavonoids with antibiotics against drug resistant Staphylococcus aureus

    Get PDF
    The use of resistance-modifying agents is a potential strategy that is used to prolong the effective life of antibiotics in the face of increasing antibiotic resistance. Since certain flavonoids are potent bacterial efflux pump inhibitors, we assessed morin, rutin, quercetin, hesperidin, and (+)-catechin for their combined activity with the antibiotics ciprofloxacin, tetracycline, erythromycin, oxacillin, and ampicillin against drug-resistant strains of Staphylococcus aureus, including methicillin-resistant S. aureus. Four established methods were used to determine the combined efficacy of each combination: microdilution checkerboard assays, time-kill determinations, the Etest, and dual disc-diffusion methods. The cytotoxicity of the flavonoids was additionally evaluated in a mouse fibroblast cell line. Quercetin and its isomer morin decreased by 3- to 16-fold the minimal inhibitory concentration of ciprofloxacin, tetracycline, and erythromycin against some S. aureus strains. Rutin, hesperidin, and (+)-catechin did not promote any potentiation of antibiotics. Despite the potential cytotoxicity of these phytochemicals at a high concentration (fibroblast IC50 of 41.8 and 67.5mg/L, respectively), quercetin is commonly used as a supplement for several therapeutic purposes. All the methods, with exception of the time-kill assay, presented a high degree of congruence without any apparent strain specificity.This work was supported by Operational Program for Competitiveness Factors—COMPETE, FCT/MEC (PIDDAC), and FEDER through Projects Bioresist—PTDC/EBB-EBI/ 105085/2008; Phytodisinfectants—PTDC/DTP-SAP/1078/ 2012 (COMPETE: FCOMP-01-0124-FEDER-028765) and the PhD grants awarded to Ana Abreu (SFRH/BD/84393/ 2012) and Anabela Borges (SFRH/BD/63398/2009). The authors are very grateful to Professor Simon Gibbons (De- partment of Pharmaceutical and Biological Chemistry, The School of Pharmacy, UCL School of Pharmacy, London) for providing the bacterial strains.info:eu-repo/semantics/publishedVersio

    A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents

    Get PDF
    In many biomedical applications, the performance of biomaterials depends largely on their degradation behavior. For instance, in drug delivery applications, the polymeric carrier should degrade under physiological conditions slowly releasing the encapsulated drug. The aim of this work was, therefore, to develop an enzymaticmediated degradation carrier system for the delivery of differentiation agents to be used in bone tissue engineering applications. For that, a polymeric blend of starch with polycaprolactone (SPCL) was used to produce a microparticle carrier for the controlled release of dexamethasone (DEX). In order to investigate the effect of enzymes on the degradation behavior of the developed system and release profile of the encapsulated osteogenic agent (DEX), the microparticles were incubated in phosphate buffer solution in the presence of a-amylase and/or lipase enzymes (at physiological concentrations), at 37 C for different periods of time. The degradation was followed by gravimetric measurements, scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy and the release of DEX was monitored by high performance liquid chromatography (HPLC). The developed microparticles were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with degradation time when compared with control samples (incubation in buffer only). For longer degradation times, the diameter of the microparticles decreased significantly and a highly porous matrix was obtained. The in vitro release studies showed a sustained release pattern with 48% of the encapsulated drug being released for a period of 30 days. As the degradation proceeds, it is expected that the remaining encapsulated drug will be completely released as a consequence of an increasingly permeable matrix and faster diffusion of the drug. Cytocompatibility results indicated the possibility of the developed microparticles to be used as biomaterial due to their reduced cytotoxic effects

    Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds : effect of static and dynamic coating conditions

    Get PDF
    Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 strokes min!1) and circulating flow perfusion (Q = 4 ml min!1; tR = 15 s) for up to 14 days. The materials were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and thin-film X-ray diffraction. Cross-sections were obtained and the coating thickness was measured. The elemental composition of solution and coatings was monitored by inductively coupled plasma spectroscopy. After only 6 h of immersion in SBF it was possible to observe the formation of small nuclei of an amorphous calcium phosphate (ACP) layer. After subsequent SBF immersion from 7 to 14 days under static, agitated and circulating flow perfusion conditions, these layers grew into bone-like nanocrystalline carbonated apatites covering each scaffold fiber without compromising its initial morphology. No differences in the apatite composition/chemical structure were detectable between the coating conditions. In case of flow perfusion, the coating thickness was significantly higher. This condition, besides mimicking better the biological milieu, allowed for the coating of complex architectures at higher rates, which can greatly reduce the coating step.The authors acknowledge the Portuguese Foundation for Science and Technology (PhD grant to A.L.O., SFRH/BD/10956/2002 and post-doctoral Grant to R.A.S., SFRH/BPD/17151/2004, under the POCTI Program). This work was partially supported by FCT through POCTI and/or FEDER programmes and also partially supported by the EU Project HIPPOCRATES (NMP3-CT-2003-505758) and EXPERTISSUES (NMP-CT-2004-500283)

    Deep exclusive π+\pi^+ electroproduction off the proton at CLAS

    Get PDF
    The exclusive electroproduction of π+\pi^+ above the resonance region was studied using the CEBAF\rm{CEBAF} Large Acceptance Spectrometer (CLAS\rm{CLAS}) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS\rm{CLAS}, together with the high luminosity, allowed us to measure the cross section for the γpnπ+\gamma^* p \to n \pi^+ process in 140 (Q2Q^2, xBx_B, tt) bins: 0.16<xB<0.580.16<x_B<0.58, 1.6 GeV2<^2<Q2Q^2<4.5<4.5 GeV2^2 and 0.1 GeV2<^2<t-t<5.3<5.3 GeV2^2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.Comment: 18pages, 21figures,2table

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
    corecore