72 research outputs found

    Parametric and adsorption kinetic studies of Methylene blue removal from Aqueous Solution using Bornean Rambutan (Nephelium lappaceum L.)skin

    Get PDF
    In this study, methylene blue (MB) dye removal from water sample by adsorption onto rambutan skin, was examined. The adsorption studies using batch experiments were carried out under different parametric conditions of initial dye concentrations(3.0 mg/l – 15.0 mg/l), solution pH 2 – 12 and solution temperature 30°C – 60°C. MB adsorption uptake was found to increase with the increase in initial dye concentration and solution temperature and was also favourable at higher pH. Langmuir, Freundlich and Temkin isotherm models were used to examine the experimental isotherms and their corresponding constants. The equilibrium data obtained were best represented by Freundlich isotherm model with a high R2 value of 0.898. The adsorption kinetic rates complied with the pseudo-second-order model indicated that chemisorption might be the rate-limiting step that controlled the overall adsorption process. Thermodynamic data analysis indicated that the adsorption process was endothermic in nature. The data presented above suggest that the rambutan skin could be an alternative low-cost biosorbent for the removal of cationic dye from textile industrial effluent

    Preparation and characterization of activated carbon from Typha orientalis leaves

    Get PDF
    Background In this study, activated carbon (AC) was prepared from Typha orientalis or commonly known as cattail leaves using physical and chemical activation phosphoric acid (H3PO4), as dehydrating agent. A two-stage process was used, i.e., semi-carbonization stage at 200 °C for 15 min as first stage followed by second stage activation, at 500 °C for 45 min. The precursor material with the impregnated agent was exposed straight away to semi-carbonization and activation temperature using a laboratory scale muffle furnace (Carbolite RHF 1500, England) under static condition in a self-generated atmosphere. Results The best condition in AC production was based on chemical activation which is AC2 with 2 M of H3PO4. AC2 has the highest removal efficiency, 97.4 % in 4 ppm concentration of Pb(II) and percentage yield of 62.73 % could be reached. The pH of the AC was controlled in the range 5–6. From Fourier transform infrared spectroscopy, functional groups such as hydroxyl group, lactone group, and carboxyl group were obtained. These were clearly illustrated by scanning electron microscopy micrographs that porous structure was progressively developed with sponge-like structure. Conclusions The Pb(II) adsorption results were best fitted in the Langmuir isotherm for equilibrium data while the adsorption kinetic fitted to the pseudo-second order model. The maximum Brunauer, Emmett and Teller surface area of the best produced AC was found to be around 1,238 m2/g. The maximum adsorption capacity was found to be 7.95 mg/g

    Removal of Chlorinated Phenol from Aqueous Media by guava seed (Psidium Guajava) Tailored Activated Carbon

    Get PDF
    In this study, the activated carbons (ACs) were prepared from guava seeds via two stages activation. The dried guava seeds were semi-carbonized at 300 °C for 1 h, and then the carbonized samples were impregnated with zinc chloride (ZnCl2). The ZnCl2: sample impregnation ratios (w/w) were altered from 1:1 to 5:1. The ACs were characterized by the yield percentage, ash content, moisture content, pH value, adsorption quality of 2,4-dichlorophenol (2,4-DCP) and surface functional groups. The surface area of the best produced AC3 was found to be 919.40 m2 g-1. It was found that AC3 had highest 2,4-DCP adsorption capacity, which was 20.9 mg g-1. The 2,4-DCP adsorption kinetic of prepared AC3 was pseudo-second order with correlation value of 0.995. In addition, the 2,4-DCP adsorption capacity of AC3 was fitted to the Langmuir model with correlation coefficient value of 0.977, indicating that chemisorption was a major contributor to the adsorption process

    Dynamic simulation of hydrogen sulfide adsorption in a packed bed column of activated carbon

    Get PDF
    Petroleum has been a major energy sources to our human being in operating machine and in other usages. The high profitable petroleum is important in our daily life but before acquiring the useful products, there are also impurities such as hydrogen sulfide which is available in the crude oil that must be removed to avoid any hazard that could bring to the environment and human health. In oil refinery industry, hydrogen sulfide is commonly removed through water stripper but very little data is available on the removal of hydrogen sulfide using adsorption process. Thus, in this study, simulation modeling of adsorption of hydrogen sulfide onto activated carbon was carried out by providing respective adsorption isotherm, adsorption kinetic, mass balance and kinetic modeling. Under isothermal conditions with no pressure drop and constant velocity, the simulation had been conducted to justify the feasibility of the data provided by the industry after optimizing the size of adsorption bed that should be used. Most of the parameters should be assumed with a reasonable value in order to continue with the simulation. As a result, the actual data provided by the industry shows the feasibility of the size of adsorption bed after optimization due to the high flow rate and high hydrogen sulfide concentration

    Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid.

    Get PDF
    Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities

    Supermassive Binaries and Extragalactic Jets

    Get PDF
    Some quasars show Doppler shifted broad emission line peaks. I give new statistics of the occurrence of these peaks and show that, while the most spectacular cases are in quasars with strong radio jets inclined to the line of sight, they are also almost as common in radio-quiet quasars. Theories of the origin of the peaks are reviewed and it is argued that the displaced peaks are most likely produced by the supermassive binary model. The separations of the peaks in the 3C 390.3-type objects are consistent with orientation-dependent "unified models" of quasar activity. If the supermassive binary model is correct, all members of "the jet set" (astrophysical objects showing jets) could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see http://www.aas.org/ApJ/v464n2/5736/5736.html

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    First measurement of θ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment

    Get PDF
    The Double Chooz experiment has determined the value of the neutrino oscillation parameter θ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22θ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22θ13
    corecore