424 research outputs found
Anomalous Rashba spin splitting in two-dimensional hole systems
It has long been assumed that the inversion asymmetry-induced Rashba spin
splitting in two-dimensional (2D) systems at zero magnetic field is
proportional to the electric field that characterizes the inversion asymmetry
of the confining potential. Here we demonstrate, both theoretically and
experimentally, that 2D heavy hole systems in accumulation layer-like single
heterostructures show the opposite behavior, i.e., a decreasing, but nonzero
electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure
Role of carbon dioxide and ion transport in the formation of sub-embryonic fluid by the blastoderm of the Japanese quail
1. The explanted blastoderm of the Japanese quail was used to explore the role of ions and carbon dioxide in determining the rate of sub-embryonic fluid (SEF) production between 54 and 72 h of incubation.
2. Amiloride, an inhibitor of Na+/H+ exchange, at concentrations of 10-3 to 10-6 M substantially decreased the rate of SEF production when added to the albumen culture medium. N-ethylmaleimide, an inhibitor of V type H+ ATPase, also decreased this rate but only to a small extent at the highest dose applied, 10-3 M. Both inhibitors had no effect on SEF production when added to the SEF. 3. The inhibitors of cellular bicarbonate and chloride exchange, 4-acetamido-4-'isothiocyano-2, 2-'disulphonic acid (SITS) and 4,4'diisothiocyanostilbene-2,2-'disulphonic acid (DIDS), had no effect upon SEF production.
4. Ouabain, an inhibitor of Na+/K+ ATPase, decreased SEF production substantially at all concentrations added to the SEF (10-3 to 10-6 M). Three sulphonamide inhibitors of carbonic anhydrase, acetazolamide, ethoxzolamide and benzolamide, decreased SEF production when added to the SEF at concentrations of 10-3 to 10-6 M. Benzolamide was by far the most potent. Neither ouabain nor the sulphonamides altered SEF production when added to the albumen culture medium.
5. Using a cobalt precipitation method, carbonic anhydrase activity was localised to the endodermal cells of the area vasculosa. The carbonic anhydrase activity was primarily associated with the lateral plasma membranes, which together with the potent inhibitory effect of benzolamide, suggests the carbonic anhydrase of these cells is the membrane-associated form, CA IV.
6. The changes in SEF composition produced by inhibitors were consistent with the production of SEF by local osmotic gradients.
7. It is concluded that a Na+/K+ ATPase is located on the basolateral membranes of the endodermal cells of the area vasculosa , and that a sodium ion/hydrogen ion exchanger is located on their apical surfaces. Protons for this exchanger would be provided by the hydration of CO2 catalysed by the membrane-associated carbonic anhydrase. Furthermore, it is proposed that the prime function of the endodermal cells of the area vasculosa is the production of SEF
Temperature dependent resistivity of spin-split subbands in GaAs 2D hole system
We calculate the temperature dependent resistivity in spin-split subbands
induced by the inversion asymmetry of the confining potential in GaAs 2D hole
systems. By considering both temperature dependent multisubband screening of
impurity disorder and hole-hole scattering we find that the strength of the
metallic behavior depends on the symmetry of the confining potential (i.e.,
spin-splitting) over a large range of hole density. At low density above the
metal-insulator transition we find that effective disorder reduces the
enhancement of the metallic behavior induced by spin-splitting. Our theory is
in good qualitative agreement with existing experiments
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
Pinch Technique and the Batalin-Vilkovisky formalism
In this paper we take the first step towards a non-diagrammatic formulation
of the Pinch Technique. In particular we proceed into a systematic
identification of the parts of the one-loop and two-loop Feynman diagrams that
are exchanged during the pinching process in terms of unphysical ghost Green's
functions; the latter appear in the standard Slavnov-Taylor identity satisfied
by the tree-level and one-loop three-gluon vertex. This identification allows
for the consistent generalization of the intrinsic pinch technique to two
loops, through the collective treatment of entire sets of diagrams, instead of
the laborious algebraic manipulation of individual graphs, and sets up the
stage for the generalization of the method to all orders. We show that the task
of comparing the effective Green's functions obtained by the Pinch Technique
with those computed in the background field method Feynman gauge is
significantly facilitated when employing the powerful quantization framework of
Batalin and Vilkovisky. This formalism allows for the derivation of a set of
useful non-linear identities, which express the Background Field Method Green's
functions in terms of the conventional (quantum) ones and auxiliary Green's
functions involving the background source and the gluonic anti-field; these
latter Green's functions are subsequently related by means of a Schwinger-Dyson
type of equation to the ghost Green's functions appearing in the aforementioned
Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final
version to appear in Phys.Rev.
Observational Constraints of Modified Chaplygin Gas in Loop Quantum Cosmology
We have considered the FRW universe in loop quantum cosmology (LQC) model
filled with the dark matter (perfect fluid with negligible pressure) and the
modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter
in terms of the observable parameters , and
with the redshift and the other parameters like , , and .
From Stern data set (12 points), we have obtained the bounds of the arbitrary
parameters by minimizing the test. The best-fit values of the
parameters are obtained by 66%, 90% and 99% confidence levels. Next due to
joint analysis with BAO and CMB observations, we have also obtained the bounds
of the parameters () by fixing some other parameters and .
From the best fit of distance modulus for our theoretical MCG model in
LQC, we concluded that our model is in agreement with the union2 sample data.Comment: 14 pages, 10 figures, Accepted in EPJC. arXiv admin note: text
overlap with arXiv:astro-ph/0311622 by other author
Collisional Velocities and Rates in Resonant Planetesimal Belts
We consider a belt of small bodies around a star, captured in one of the
external or 1:1 mean-motion resonances with a massive perturber. The objects in
the belt collide with each other. Combining methods of celestial mechanics and
statistical physics, we calculate mean collisional velocities and collisional
rates, averaged over the belt. The results are compared to collisional
velocities and rates in a similar, but non-resonant belt, as predicted by the
particle-in-a-box method. It is found that the effect of the resonant lock on
the velocities is rather small, while on the rates more substantial. The
collisional rates between objects in an external resonance are by about a
factor of two higher than those in a similar belt of objects not locked in a
resonance. For Trojans under the same conditions, the collisional rates may be
enhanced by up to an order of magnitude. Our results imply, in particular,
shorter collisional lifetimes of resonant Kuiper belt objects in the solar
system and higher efficiency of dust production by resonant planetesimals in
debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into
arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and
Dynamical Astronomy
Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration.
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks
On the Background Field Method Beyond One Loop: A manifestly covariant derivative expansion in super Yang-Mills theories
There are currently many string inspired conjectures about the structure of
the low-energy effective action for super Yang-Mills theories which require
explicit multi-loop calculations. In this paper, we develop a manifestly
covariant derivative expansion of superspace heat kernels and present a scheme
to evaluate multi-loop contributions to the effective action in the framework
of the background field method. The crucial ingredient of the construction is a
detailed analysis of the properties of the parallel displacement propagators
associated with Yang-Mills supermultiples in N-extended superspace.Comment: 32 pages, latex, 7 EPS figures. v2: references, comments added, typos
corrected, incorrect `skeleton' conjecture in sect. 3 replaced by a more
careful treatment. v3: typos corrected, final version published in JHE
Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers
We present a new methodology to determine the expansion history of the
Universe analyzing the spectral properties of early type galaxies (ETG). We
found that for these galaxies the 4000\AA break is a spectral feature that
correlates with the relative ages of ETGs. In this paper we describe the
method, explore its robustness using theoretical synthetic stellar population
models, and apply it using a SDSS sample of 14 000 ETGs. Our motivation
to look for a new technique has been to minimise the dependence of the cosmic
chronometer method on systematic errors. In particular, as a test of our
method, we derive the value of the Hubble constant (stat)
(syst) (68% confidence), which is not only fully compatible with the
value derived from the Hubble key project, but also with a comparable error
budget. Using the SDSS, we also derive, assuming w=constant, a value for the
dark energy equation of state parameter (stat)
(syst). Given the fact that the SDSS ETG sample only reaches , this
result shows the potential of the method. In future papers we will present
results using the high-redshift universe, to yield a determination of H(z) up
to .Comment: 25 pages, 17 figures, JCAP accepte
- âŠ