266 research outputs found

    Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective.

    Full text link
    Podeu consultar l'article comentat a: https://doi.org/10.3389/fnagi.2015.00107A commentary on: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective

    Non-invasive brain stimulation and plasticity changes in aging

    Get PDF
    Our conceptualization of brain changes across the lifespan is evolving (Pascual-Leone et al., 2011). There appears to be no period when the brain and its functions are static. Instead, changes are continuous throughout the lifespan, some resulting in benefits, others in functional loss and decline (Park and Reuter-Lorenz, 2009; Pascual-Leone and Taylor, 2011). Therefore, the most suitable framework appears to be that of life-long, continued “developmental” processes that influence each other, and there is a growing need for deeper understanding of brain changes (plasticity) from prenatal states and infancy through childhood into adult and old age..

    Reorganization of brain networks in aging: a review of functional connectivity studies

    Get PDF
    Healthy aging (HA) is associated with certain declines in cognitive functions, even in individuals that are free of any process of degenerative illness. Functional magnetic resonance imaging (fMRI) has been widely used in order to link this age-related cognitive decline with patterns of altered brain function. A consistent finding in the fMRI literature is that healthy old adults present higher activity levels in some brain regions during the performance of cognitive tasks. This finding is usually interpreted as a compensatory mechanism. More recent approaches have focused on the study of functional connectivity, mainly derived from resting state fMRI, and have concluded that the higher levels of activity coexist with disrupted connectivity. In this review, we aim to provide a state-of-the-art description of the usefulness and the interpretations of functional brain connectivity in the context of HA. We first give a background that includes some basic aspects and methodological issues regarding functional connectivity. We summarize the main findings and the cognitive models that have been derived from task-activity studies, and we then review the findings provided by resting-state functional connectivity in HA. Finally, we suggest some future directions in this field of research. A common finding of the studies included is that older subjects present reduced functional connectivity compared to young adults. This reduced connectivity affects the main brain networks and explains age-related cognitive alterations. Remarkably, the default mode network appears as a highly compromised system in HA. Overall, the scenario given by both activity and connectivity studies also suggests that the trajectory of changes during task may differ from those observed during resting-state. We propose that the use of complex modeling approaches studying effective connectivity may help to understand context-dependent functional reorganizations in the aging process

    Greater cognitive reserve is related to lower cortical excitability in healthy cognitive aging, but not in early clinical Alzheimer’s disease

    Get PDF
    ObjectiveTo investigate the relationship between cortico-motor excitability and cognitive reserve (CR) in cognitively unimpaired older adults (CU) and in older adults with mild cognitive impairment or mild dementia due to Alzheimer’s disease (AD).MethodsData were collected and analyzed from 15 CU and 24 amyloid-positive AD participants aged 50–90 years. A cognitive reserve questionnaire score (CRQ) assessed education, occupation, leisure activities, physical activities, and social engagement. Cortical excitability was quantified as the average amplitude of motor evoked potentials (MEP amplitude) elicited with single-pulse transcranial magnetic stimulation delivered to primary motor cortex. A linear model compared MEP amplitudes between groups. A linear model tested for an effect of CRQ on MEP amplitude across all participants. Finally, separate linear models tested for an effect of CRQ on MEP amplitude within each group. Exploratory analyses tested for effect modification of demographics, cognitive scores, atrophy measures, and CSF measures within each group using nested regression analysis.ResultsThere was no between-group difference in MEP amplitude after accounting for covariates. The primary model showed a significant interaction term of group*CRQ (R2adj = 0.18, p = 0.013), but no main effect of CRQ. Within the CU group, higher CRQ was significantly associated with lower MEP amplitude (R2adj = 0.45, p = 0.004). There was no association in the AD group.ConclusionLower cortico-motor excitability is related to greater CRQ in CU, but not in AD. Lower MEP amplitudes may reflect greater neural efficiency in cognitively unimpaired older adults. The lack of association seen in AD participants may reflect disruption of the protective effects of CR. Future work is needed to better understand the neurophysiologic mechanisms leading to the protective effects of CR in older adults with and without neurodegenerative disorders

    Meaning in Life: A Major Predictive Factor for Loneliness Comparable to Health Status and Social Connectedness

    Get PDF
    Objective: Loneliness is the subjective distress of feeling alone and has a strong impact on wellbeing and health. In addition to well-known predictors like isolation and poor health, a better understanding of the psychological determinants of loneliness would offer effective targets for future complementary interventions. Methods: In this cross-sectional observational study (N = 2,240), we compared the explanatory power of several important risk factors of loneliness with the affective, motivational, and cognitive aspects of the Meaning in Life (MiL) construct. Different nested linear models were compared including socio-demographic, lifestyles, social-connectedness, and self-rated health variables, to assess the overlapping and non-overlapping explanatory power of each of them. Results: Health status and MiL were found to be the most important predictors of loneliness, followed by social connectedness and, with a much lower weight, lifestyles, and socio-demographic factors. Within the MiL factor, the most cognitive component, sense of coherence, had a greater explanatory power than the more affective and motivational ones. Conclusion: Reduced MiL, the capacity of an individual to attach 'value and significance' to life, is a crucial predictor to the feeling of loneliness. These results suggest that programs aiming to combat loneliness should go well beyond situational interventions and include more cognitive, value-centered interventions that enable individuals to define and pursue a meaningful vital plan

    Spontaneous brain activity in healthy aging: an overview through fluctuations and regional homogeneity

    Full text link
    Introduction: This study aims to explore whole-brain resting-state spontaneous brain activity using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) strategies to find differences among age groups within a population ranging from middle age to older adults. Methods: The sample comprised 112 healthy persons (M = 68.80, SD = 7.99) aged 48-89 who were split into six age groups (< 60, 60-64, 65-69, 70-74, 75-79, and ≄ 80). Fractional amplitude of low-frequency fluctuation and ReHo analyses were performed and were compared among the six age groups, and the significant results commonly found across groups were correlated with the gray matter volume of the areas and the age variable. Results: Increased activity was found using fALFF in the superior temporal gyrus and inferior frontal gyrus when comparing the first group and the fifth. Regarding ReHo analysis, Group 6 showed increased ReHo in the temporal lobe (hippocampus), right and left precuneus, right caudate, and right and left thalamus depending on the age group. Moreover, significant correlations between age and fALFF and ReHo clusters, as well as with their gray matter volume were found, meaning that the higher the age, the higher the regional synchronization, the lower the fALFF activation, and the lower gray matter of the right thalamus. Conclusion: Both techniques have been shown to be valuable and usable tools for disentangling brain changes in activation in a very low interval of years in healthy aging

    Validation and Normative Data of the Spanish Version of the Rey Auditory Verbal Learning Test and Associated Long-Term Forgetting Measures in Middle-Aged Adults

    Get PDF
    Rey Auditory Verbal Learning Test (RAVLT) is an episodic memory helpful measure to detect changes associated with abnormal aging. There is a lack of RAVLT validation and normalization studies in Spain. The aim was to determine its psychometric properties and explore long-term forgetting (LTF) performance through 1-week delayed recall under three different modes of administration. The RAVLT was administered to 602 cognitively healthy volunteers, aged between 41 and 65 years, of whom 251 completed the LTF assessment. Findings reveal a factorial structure of four components, with satisfactory goodness of fit, and adequate convergent and divergent validity. We also demonstrated the differential effect of three methodologies used in LTF assessment, supporting that test expectancy positively influences long-term storage. Finally, normative data were generated according to age, sex, and education. The test, including the LTF measure, is a promising tool to estimate memory in middle-aged adults and develop predictive brain aging models
    • 

    corecore