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Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which
brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of addi-
tional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key
mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interac-
tions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients car-
rying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They
accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive as-
pects of motor functioning by varying speed and complexity of movements. To investigate causal interactions
among brain regions a single Dynamic Causal Model (DCM)was constructed and fitted to the data from each sub-
ject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and
the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers.
In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral
dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to es-
timated clinical onset. This compensatory mechanism was restricted to complex movements characterised by
high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects
towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task
conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative
in controls compared to genemutation carriers. Furthermore, changes in the connectivity pattern of gene carriers
allowed prediction of the years to estimated disease onset in individuals.
Our study characterises the connectivity pattern of core cortical regions maintaining motor function in rela-
tion to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for com-
pensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter
finding nicely mirrors a previously published general linear model-based analysis of the same data. Such
knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions
based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact
on other regions in motor-associated networks.

© 2013 Elsevier Inc. All rights reserved.
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Introduction

Cognitive reserve (CR; Katzman, 1993; Stern, 2002; for a review see
Valenzuela, 2008) is a concept to explain relatively preserved cognition
in the face of neurodegeneration (Bartrés-Faz and Arenaza-Urquijo,
2011; Murray et al., 2011; Steffener et al., 2011). Passive CR is
characterised in terms of brain size or number of neurons (e.g. Satz,
1993), whilst active CR refers to spontaneously variable reactions of
the brain when faced with cognitive challenges. Neuroimaging can
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help to examine neural compensation (NC) as well as neural reserve
(NR), which are subcomponents of active CR (Stern, 2009). NC describes
the recruitment of additional brain areas to maintain performance,
whilst NR reflects that impaired and non-impaired individuals use the
same areas tomaintain functioning, though to different levels of efficien-
cy and capacity (Stern, 2009). NR is presumably instantiated by differen-
tial regional interactions (Seghier et al., 2010) shifting control from one
set of regions to another (see below). Thus, one approach to investigate
compensatory mechanisms in neurodegenerative diseases is to look at
between-group as well as individual differences in NR (see e.g. Holtzer
et al., 2009; Steffener et al., 2011). The assessment of compensatory
mechanisms should preferably be undertaken in pre- or early clinical
stages when therapeutic interventions are most likely to be effective.
As such preclinical stages cannot easily be identified in the majority of
neurodegenerative disorders, we chose to investigate Huntington's dis-
ease (HD), where preclinical stages can be identified with certainty and
graded according to estimated proximity to symptom onset.

HD is a genetically caused hereditary neurodegenerative disease. As
the exact location and nature of the genetic mutation are known (The
Huntington's Disease Collaborative Research Group, 1993), it is possible
to identify HD gene carriers decades before actual symptom onset. This
clinical onset is defined by the presence of unequivocal motor symptoms
(Beglinger et al., 2010; Walker, 2007). Therefore, patients without overt
motor symptoms are described as ‘pre-manifest’ or ‘preHD’. Using a
pre-manifest patient's current age and the degree of genetic mutation
(i.e. the number of CAG trinucleotide repeats in the Huntingtin gene on
chromosome four), the years to clinical onset (yto) can be estimated
with a parametric survival model (Langbehn et al., 2004; Langbehn et
al., 2010). The diagnostic status as well as the yto are used in neuroimag-
ing studies to determine relationships with potential structural or func-
tional imaging markers of the pre-manifest stage of disease (Feigin et
al., 2006; Klöppel et al., 2008; Klöppel et al., 2009; Mühlau et al., 2007;
Novak et al., 2012; Rosas et al., 2005; Scahill et al., 2013; Tabrizi et al.,
2009; Tabrizi et al., 2011; Tabrizi et al., 2012; Wolf et al., 2007).

Previous studies focusing on compensatory mechanisms in motor
functioning were conducted in the context of, among others, stroke
(Grefkes et al., 2008b), preclinical Parkinson's disease (Buhmann et al.,
2005) as well as mild to moderate HD and preHD (Bartenstein et al.,
1997; Klöppel et al., 2009). Regarding HD, a supporting role of parietal
motor related regions was first discussed in a PET experiment reported
by Bartenstein et al. (1997). These parietal regions weremore activated
in HD patients than controls.

Nevertheless, Klöppel et al. (2009) stated that a simple shift in activa-
tion towards parietal regions might be too simplistic a view of the com-
pensating mechanism and emphasised an additional role for the
supplementary motor area (SMA), in which activations correlated with
gene status, a finding well in line with those in patients with manifest
HD (Gavazzi et al., 2007): Compared to healthy controls (HC), preHD ac-
tivated caudal SMA during a finger tapping task to a greater extent in all
movement conditions, and this activation increased with approaching
clinical onset estimations. More complex finger movements led to even
higher activations in pSMA in subjects further from predicted disease
onset. Outside the SMA, the left superior parietal cortex (lSPC) showed
reduced activation with increasedmovement complexity in preHD com-
pared toHC, and in right SPC (rSPC), the preHDgroup showed greater ac-
tivations in all but the most demanding conditions (Klöppel et al., 2009).

However, it is difficult to directly compare the studies of Bartenstein
et al. (1997) and Klöppel et al. (2009), as the former authors investigated
a sample of seven HD patients already exhibiting mild to moderate
motor symptoms as opposed to the preHD group in Klöppel et al.
(2009). The atrophy and loss of function were probably more severe in
the mild to moderate HD group. Taken together the results suggest
that the superior parietal cortices and pre- and caudal SMAs could con-
tribute to compensatorymotormechanisms in preHD. An understanding
of the interactions between cortical areas subtending compensation for
the effects of neurodegeneration might help to shape therapeutic
interventions (see e.g.Wang et al., 2011 for pharmacologically enhanced
connectivity in the motor system). As an example, region specific inter-
ventions such as transcranial magnetic stimulation (TMS) can be applied
most successfully to regions that are increasingly activated closer to
disease onset. However, application to regions that exert an excitatory
or inhibitory influence may also prove most useful (see e.g. Grefkes et
al., 2010 for rTMS over M1) in the context of network function (see
McIntyre and Hahn, 2010 for a review on deep brain stimulation).

A range of network analysis methods, such as Granger causality
(Goebel et al., 2003; Granger, 1980) or Dynamic Causal Modelling
(DCM; Friston et al., 2003) can be used to study effective connectivity
(the influence one group of neurons has on another). Causal interactions
between brain areas of interest can be studied and quantified; e.g. how
does one region cause a change of activity in another, or how does a par-
ticular experimental manipulation influence the connectivity between
two other regions. DCM has been successfully used to characterise
motor function inhealthy subjects andpatients other than those suffering
fromHD (see e.g. Boudrias et al., 2012; Grefkes et al., 2008a; Grefkes et al.,
2008b; Kasess et al., 2008; Rowe et al., 2010). In HD, classical functional
connectivity analyses have been used in different cognitive domains
(Wolf et al., 2008a, 2008b, 2012a, 2012b), but these correlational analyses
do not allow inferences about causality to be made as correlated activity
in two areas may be driven by a common third area (Stephan, 2004).

Therefore, DCM was chosen as our method to build on previous
studies of motor function in preHD whilst overcoming the interpreta-
tional constraints of standard functional (as opposed to effective) con-
nectivity analyses. The same data have been published before with a
standard GLManalysis (Klöppel et al., 2009).We usedDCM and a finger
tapping task which leads to robust activations and probe functions that
are specifically affected by HD (Bartenstein et al., 1997; Gavazzi et al.,
2007; Lehéricy et al., 2006; Witt et al., 2008). The task does this by ma-
nipulating movement rate and complexity.

We analysed the nature of interactions between cortical regions of
the motor system on the basis of DCM parameters, which constitute
measures of connectivity, with two aims: First, as an increasing number
of studies indicate the existence of neurodevelopmental and trait spe-
cific markers in HD (Lee et al., 2012; Marder and Mehler, 2012;
Nopoulos et al., 2011), we compared such interactions in preHD with
those of healthy controls (HC). Specifically, we expected to find more
differences between preHD and HC with increasing task demands. Our
second and key aim was to elucidate the development of NR as the
time of expected symptom onset approached. Thus, we examined the
relationship of inter-regional connectivity and yto in the preHD sample.
As these subjects were in the pre-manifest stage, we considered
reorganisation correlated with increasing neurodegeneration to be
compensatory in nature.We expected to find alterations in connectivity
between parietal and premotor and supplementary motor regions
based on previous motor activation results.

Materials and methods

Participants

Fifteen pre-symptomatic gene mutation carriers (7 females, mean
age 36.9 years, range 26–49) and twelve healthy controls (4 females,
mean age 36.5 years, range 23–60), all right handed and matched
according to age and sex were examined. A trained neurologist assessed
all carriers with the Unified Huntington's Disease Rating Scale (UHDRS)
to stage them. Pre-symptomatic participants covered a wide range of
yto; thesewere computed as the number of years at which the predicted
probability of clinical onset exceeds 0.6 (Langbehn et al., 2004); see
Table 1 for demographic and clinical data. The local Ethics Committee
approved the study and all participants gave written informed consent
according to the Declaration of Helsinki. The current study is a reanalysis
of the data thatwas published by Klöppel et al. (2009) as a standard GLM
analysis. We extended on these previous findings by applying DCM.



Table 1
Demographics of gene carriers (preHD) and controls (HC) reportedwithmedian and range.

HC preHD

Number of participants 12 15
Female/male 4/8 7/8
Age 32.5 (23: 60) 37 (26: 54)
Number of CAG repeats NA 42 (39: 47)
UHDRS motor score NA 2 (0: 17)
Years to 60% probability of clinical onset NA 12.51 (6.3: 35.4)

Table 2
Regions of interest in fMRI analysis and MNI peak coordinates of spheres used to search
for individual peak activation to extract volumes of interest in DCM analysis.

Region Hemisphere x y z

Caudal SMA L −6 −10 54
Primary motor cortex L −40 −18 60
Pre SMA 0 6 54
Dorsal premotor cortex L −24 0 54
Dorsal premotor cortex R 26 −6 52
Superior parietal cortex L −22 −68 58
Superior parietal cortex R 22 −66 60
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Experimental procedure and MRI scanning

Participants executed finger tapping sequences with the second to
fifth fingers of their right hand paced by a metronome and delivered
via headphones in the MRI scanner. Speed of pacing and complexity
of the movements were varied systematically to challenge motor ex-
ecution and higher motor control. Participants moved their fingers at
a rate of 0.5 (slow sequence) or 2 Hz (fast sequence) and performed
two types of sequences. The first ‘simple sequence’ consisted of regu-
lar unidirectional sequential button presses made with index, middle,
ring and little fingers by all participants. The second ‘complex se-
quence’ was irregular without immediate repetitions, tapped with
the same four fingers as the simple sequence but generated uniquely
for each participant. Both sequences were trained prior to scanning
until participants stated that they were comfortable performing
them. A standard general linear model approach of these fMRI data
has been reported previously (Klöppel et al., 2009) where a more de-
tailed description of the task is provided.

Six types of experimental block of 20 s each and six blocks in total
per condition (simple slow, simple fast, complex slow, complex fast,
rest slow and rest fast) were presented in a pseudo-randomized
order. During rest blocks, participants listened to 0.5 or 2 Hz clickswith-
out pressing buttons. At the beginning of each block, instructions and
numbers counting down from 3 to 0 in 3 s helped to prepare and start
the tapping sequence on time.

Participants were scanned on a 1.5 T MRI system (Siemens Sonata;
Erlangen, Germany) with the following scanning parameters: TR 3.6 s,
TE 0.05 s, FOV 192 mm, flip angle 90 and 40 slices in descending
order of 3 × 3 × 3 mm voxel size resulting in whole brain coverage.
Total scanning time was around 15 min per participant. An additional
T1-weighted MDEFT sequence (Deichmann et al., 2004) was acquired
to exclude structural abnormalities unrelated to HD.

Behavioural and fMRI data analysis

Error rates and mean and standard deviation of cue-response inter-
vals were computed as reported in Klöppel et al. (2009). The initial pro-
cessing of the data was also identical. In brief, realignment and spatial
normalisation of volumes to a standard MNI template were followed by
smoothing with an 8 mm full-width at half-maximum (FWHM) Gauss-
ian kernel. Individual data were analysed in a General Linear Model
(GLM; Friston et al., 1995)with separate regressors for each of the six ex-
perimental conditions and six regressors coding head movements.

Effective network connectivity

Background of DCM
Studying cortical reorganisation in a network of known cortical

areas in different experimental conditions is methodologically chal-
lenging. Simple correlations of the measured BOLD signal are insuffi-
cient to detect causalities (Stephan, 2004). This type of inference
requires modelling of changing neuronal activity in different contexts
from the recorded effects on the BOLD signal. DCMs describe the bio-
physical nature of directed interactions between brain areas (Friston
et al., 2003) by incorporating two forward models, one at the neuronal
and one at the haemodynamic level. A number of introductory articles
are available (e.g. Friston, 2009; Seghier et al., 2010; Stephan et al.,
2010) and the physiological basis of the approach is constantly being
evaluated (Daunizeau et al., 2011; David et al., 2008).

At the neuronal level, the network with its nodes is expressed by a
bilinear state equation, which contains three sets of model parameters
predefined by the user: First, input parameters specify in which regions
experimental stimuli (i.e. blockswith simple or complex finger presses)
enter themodel. Second, assumptions about the condition-independent
connections between the nodes, which are not related to the task at
hand, are specified. Those are often referred to as ‘fixed’ connections.
In contrast, a third set of modulatory parameters expresses expected
changes in connection strengths caused by these experimental condi-
tions. The connection strength between regions is reported inHz. A neg-
ative value is interpreted as decreased, a positive value as increased
coupling from one region to another.

In addition to this neuralmodel, the haemodynamicmodel (Stephan
et al., 2007) contains parameters characterising bloodflow and oxygen-
ation change. The haemodynamic model ‘transforms’ the specifications
of the neural model into a BOLD response to best match the modelled
and actually measured BOLD responses with parameters that are phys-
iologically plausible (Daunizeau et al., 2011; Stephan et al., 2007).
Hence, knowing the experimental inputs as well as the output (i.e. the
measured BOLD response) and viewing the brain as a dynamic input–
state–output system, one can infer on underlying states such as regional
causal interactions that remain hidden in conventional fMRI analyses.
All model parameters are estimated in a Bayesian framework that com-
bines existing a-priori knowledge with the actually measured data to
generate a posterior probability distribution for each parameter.
Time series extraction
Time series were extracted for each participant according to anatom-

ical and functional criteria as advised by Stephan et al. (2010), making
sure to capture activity on an individual basis, whilst constraining indi-
vidual peak activation to lie within a range from the group maximum.
In a previous study, Klöppel et al. (2009) performed a ROI-based group
analysis of the cortical motor system defining spheres centred on peak
activations from the HC group in left primary motor cortex (lM1),
pre-supplementary motor area (pSMA), caudal supplementary motor
area (cSMA), left and right dorsal premotor cortices (lPMd, rPMd) as
well as left and right superior parietal cortices (lSPC, rSPC) (Table 2).

First, we defined the same spheres with 10 mm radius as in the
above-mentioned ROI analysis (centre MNI coordinates reported in
Table 2) (Klöppel et al., 2009). Within each sphere, peak activations
were located in every subject requiring a minimum threshold of p b .05
uncorrected (Stephan et al., 2010). Next, the first eigenvariate of the
time serieswithin 4 mm(i.e. half the size of the FWHMsmoothing kernel
used during preprocessing) of the subject-specific peak voxel was
extracted and adjusted for effects of no interest (i.e. variance unexplained
by the experimental conditions). Each time series was extracted from the
contrast that should best reveal the activation of the respective region of
interest: Time series from the cSMA were extracted from the contrast
fast > slow condition, whereas time series for the remaining regions
were extracted from the contrast complex > simple condition.
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Before extraction, we ensured that no overlap of subject-specific
spheres in neighbouring regions existed by checking the peak activa-
tion coordinates and surrounding spheres. An additional visual check
of correct gyral location was performed in each region and correc-
tions were applied if necessary.

Dynamic causal model specified
To investigate neural reserve inpreHD, the time series of all seven cor-

tical regions implicated in previous activation analyses were included in
one DCM, constituting a network of cortical motor function: PSMA,
cSMA, lPMd, rPMd, lSPC, rSPC and lM1 (Fig. 1). The slice timing option
in DCM for fMRI was used (Kiebel et al., 2007) to account for regional ac-
quisition time differences. Note that we explicitly chose to split the SMA
in two sub-regions, as the pSMA is thought to be involved inmore cogni-
tively challenging conditions (see e.g. Nakamura et al., 1998; Rushworth
et al., 2004) and is connectedpredominantly to prefrontal andparietal re-
gions, whereas the caudal SMA represents the motoric executive part of
the SMA being strongly interconnected with M1 as well as contributing
to the corticospinal tract (Luppino et al., 1993; Nachev et al., 2008).
rSPC and rPMd were differentially activated by the task and included in
themodel to account for potential contributions toNR from the ipsilateral
hemisphere (Klöppel et al., 2009). Subsequently, interhemispheric con-
nections between rSPC, lSPC, rPMd and lPMd as well as connections to
pSMA (Geyer et al., 2000; Iacoboni, 2006: Mars et al., 2011; Narayana et
al., 2012) were included. All connections between regions were specified
bi-directionally, as it is physiologically plausible to assume a backward
connection if a forward connection exists and vice versa (Kötter and
Stephan, 2003; Zeki and Shipp, 1988).

We specified all experimental inputs (blocks of simple slow, simple
fast, complex slow, complex fast, rest slow and rest fast conditions) to
enter the model via associative sensory regions lSPC and rSPC which
Fig. 1. Dynamic Causal Model specified in each participant. White arrows represent
condition-independent connections between regions of interest. Modulations of these con-
nections by experimental factors, i.e. condition-dependent modulations, are colour-coded
(purple for speed, orange for complexity modulation). The colour of the region represents
the modulation by the respective experimental factor(s). All afferent connections from
other regions towards the respective region aremodulated. All specifiedmodel parameters
can be reviewed in Supplement 3. For reasons of figure legibility, anatomical location of re-
gions is approximated. Themodel is superimposed on ameanT1-weighted structural image
of all participants, normalised to MNI space.
then distribute them to pSMA, lPMd and rPMd (see e.g. Koch and
Rothwell, 2009). The experimental inputs entered themodel as a single
driving input, which we created as one regressor containing all experi-
mental blocks.

We assumed no direct connection between pSMA andM1, but an in-
direct influence via lPMdand cSMA(Nachev et al., 2008). LM1 represents
the ‘executive branch’ of the circuit specifying output to the corticospinal
tract as participants performed the current task solely with their right
hand.

Both complexity of the tapping sequence as well as speed of tapping
execution were experimental factors used in the study of Klöppel et al.
(2009). Bothwere therefore kept as distinctmodulatory experimental in-
puts. On one hand, these modulatory inputs were specified in the DCM
consistently with previous GLM analyses (Klöppel et al., 2009) — if a re-
gion exhibited differential activation between groups or interaction ef-
fects between conditions and groups in second level random effects
analyses, or if activity in that region correlatedwith yto,we chose connec-
tions to this region to bemodulated by the respective experimental factor
(Fig. 1). On the other hand, we built on previous results that showed an
interesting pattern of rPMd activity (Supplement 1) across conditions,
such that HC subjects recruited this region more than preHD when task
demands were more complex. With this analysis we additionally ex-
plored possible modulations of rPMd by speed and complexity. Finally,
to disentangle potential influences of the more “cognitive” from more
“executive” regions on lM1 (Nachev et al., 2008; Witt et al., 2008), we
specified a modulation by speed on the afferent connection from cSMA
(“executive function”) and by complexity on the connection from lPMd
(“cognitive function” — Groppa et al., 2012; O'Shea et al., 2007b). Supple-
ment 1 contains a more detailed description of the model specification
process.

As HD is a neurodegenerative disease, it is important to mention the
fact that potential atrophy of cortical regions is indirectly incorporated
in a DCM. Parameters of a region-specific haemodynamic model are es-
timated within the DCM framework. Effects of atrophy on the respec-
tive neurovascular processes are incorporated in a subject-specific
fashion (Stephan et al., 2007). In addition, we have done a voxel-
based morphometry (VBM; Ashburner and Friston, 2000) analysis
(data not reported in themanuscript) to illustratewhich areas are affect-
ed by atrophy.When correcting formultiple comparisons (p b 0.05 FWE
corrected), no areas showed reduced greymatter volume in preHD com-
pared toHC. At amore liberal threshold of p b 0.001 uncorrected, striatal
reductions became apparent. Thus, no area included in the DCM showed
reduced grey matter volume in preHD compared to HC.

DCM specification and estimation was carried out with DCM10 in
Statistical Parametric Mapping software (SPM8; Wellcome Trust Cen-
tre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm).

Inference on model parameters: group analysis of DCM parameters
After model estimation in a Bayesian framework, the DCM of each

participant was inspected with regard to the percentage of variance
explained by using in-house MATLAB routines (version 7.14 R2012a;
The Mathworks Inc., Natick, Massachusetts, USA). As a quality check
we required that at least 10% of variance was explained. We then
performed random effects inference on model parameter estimates
using Wilcoxon signed rank tests with SPSS version 18.0 (PASW statis-
tics) to assess whether the parameter estimates were significantly dif-
ferent from zero within groups (i.e. the existence of the parameters
was confirmed by the model), and Wilcoxon rank sum tests to identify
group differences.

Inference on model parameters: association of DCM parameters with
years to onset

Rather than using all 65 predefined functional connecting andmod-
ulatory DCM parameters to predict yto, we applied principle compo-
nent analysis (PCA) and varimax rotation with Kaiser's normalisation
using SPSS. We aimed to reduce dimensionality of the data and sought

http://www.fil.ion.ucl.ac.uk/spm
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to identify sets of parameters thatwould cluster together to facilitate in-
terpretability. We decided to include both condition-independent and
condition-dependent connections together in the PCA as in our under-
standing of compensation in preHD, it is well possible that a mixture
of these connection strengths reflects compensatory mechanisms.

Having reduced data dimensionality, we used PCA group derived
component values as predictors in a hierarchical multiple linear re-
gression model to predict yto. This allowed us to relate DCM connec-
tion strengths to neurodegenerative processes. The age of preHD
patients was included as a covariate with forced entry, because age
is correlated with yto (Langbehn et al., 2004). The principal compo-
nents (PCs) were then entered in a stepwise fashion until no further
significant amounts of additional variance were explained. Subse-
quently, we examined the connection strengths with high loadings
on the included PCs with regard to their individual correlations
with yto.

An additional regression analysiswas conductedwith all standardised
components derived from PCA to clarify if the combination of all PCs also
predicts yto. Estimated yto was predicted with a regression using 10
rotated PCs and age as features. In a leave-one out cross-validation, the
regression parameters were repetitively estimated with the data set
containing all but one observation, and the error for each observation
was estimated using the model that excluded the left-out observation.
This avoided over-fitting, which would have resulted in over-optimistic
regression performance that would naturally arise because the number
of variables is very close to the number of observations. The PCA scores
were computed only once in order to avoid fluctuations in the factors
within cross-validation loops.

Results

Effective network connectivity: dynamic causal modelling

Time-series were extracted from each region of interest in each par-
ticipant and included in individual DCMs (MNI coordinates provided in
Inline Supplementary Table S2). Inspections of variance explained by
the models and parameter estimability in three preHD patients led to
their exclusion leaving 12 preHD patients and HC for further DCM anal-
yses. Beforehand, we checkedwhether the exclusion biased any sample
characteristics (Table 1), which was not the case.

Inline Supplementary Table S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2013.02.058.

http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
image of Fig.�2
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Inference on model parameters: group analysis of DCM parameters
Detailed descriptive statistics of all DCM parameters are provided in

Inline Supplementary Table S3. The condition-independent and modula-
tory connections found to be significantly different from zero inWilcoxon
rank sum tests are depicted in Fig. 2 for both groups. Between group
differences identified using Wilcoxon's signed rank test resulted from
more negative connectivity in the HC group. Specifically, the condition-
independent connection from pSMA to lSPC (p = 0.02) was stronger
and more negative in HC compared to preHD and so were the effects of
‘complexity’ from cSMA to pSMA (p = 0.03) and from lPMd to pSMA
(p = 0.03). The effect of ‘speed’ from rPMd to rSPC (p = 0.03) was
more negative in HC as well, though not significantly different from
zero in each group. Please note that these differences are mainly driven
by the fact that these connections are significantly different from zero in
HC, but not in preHD, where the mean group parameter estimate did
not significantly differ from zero. These differences do not remain
significant if Bonferroni corrections for multiple comparisons are ap-
plied (threshold p b 0.001 for condition-independent, p b 0.003 for
‘complexity’modulatory connections and p b 0.004 for ‘speed’modula-
tory connections define significance at p b 0.05 after correction).

Inline Supplementary Table S3 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.02.058.

Dimensionality reduction of DCM parameters
The PCAwith varimax rotation and Kaiser's normalisation identified

ten PCs with eigenvalues higher than 1, which cumulatively explained
98.56% of total variance. An overview of factor loadings, the eigenvalues
of the PCs, as well as percent variance explained after rotation can be
found in Inline Supplementary Table S4. Note that we also included pa-
rameters which were not significantly different from zero in the PCA.
We observed that parameter estimates varied substantially in preHD.
Whilst this led to non-significance across subjects, we reasoned that
this variability may carry relevant information and thus decided to
keep the respective parameters in the model.

Inline Supplementary Table S4 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.02.058.

Prediction of years to onset with DCM parameters and assessment of
neuronal reserve

Multiple linear regression analyses identified relationships between
the extracted PCs and predicted yto. A hierarchical multiple linear re-
gression analysis with age as a covariate included PC 1 (Table 3), which
explained an additional 27.7% of variance. The stepwise inclusion of fur-
ther PCs in themodel led to insignificant changes in R2 and hence no fur-
ther PCs were added. The Durbin–Watson statistic (coefficient = 2.27),
checks for homoscedasticity as well as non-multicolinearity, confirmed
the validity of the model. A negative bivariate correlation with yto
(r = −0.73, p = 0.007) indicated a stronger expression of the compo-
nent closer to expected disease onset.

PC 1 contained high loadings of twelve DCM parameters involving
connections of bilateral SPC and PMd (inline Supplementary Table S4).
Table 3
Hierarchical multiple linear regression model with age as a covariate and stepwise inclu-
sion of connectivity-representing components from PCA to predict yto.

Model Included variables B SE B Beta R2 Adjusted R2

1 Constant 37.58 7.37
Age − .56 .18 − .70⁎ .49⁎ .32

2 Constant 31.75 5.52
Age − .41 .13 − .52⁎

Component 1 −4.18 1.27 − .56⁎⁎ .77⁎⁎ .61

Note: B = unstandardized regression coefficients; SE B = standard error of B; Beta =
standardised regression coefficients.
R2 was adjusted according to Stein's formula.
⁎ p b 0.05.

⁎⁎ p b 0.01.
Post-hoc examination revealed bivariate correlations of the yto with
five of these connection strengths (Fig. 3; Inline Supplementary Table
S3). This number reduced to three after including age as a covariate
(see Fig. 3, correlation coefficients without brackets). Of note, a positive
correlation between yto and a parameter effectively indicate that the
coupling decreases significantly with approaching disease onset, after
correcting for age effects: Here, the condition-independent causal influ-
ence of rPMd on the lPMddecreases as does the ‘complexity’modulatory
connection from rSPC to rPMd. In contrast, a negative correlation be-
tween yto and a parameter indicates that the coupling increases signifi-
cantly with approaching disease onset. In ourmodel, (Fig. 3), complexity
associated modulatory connectivity from lPMd to lSPC increases when a
patient is closer to disease onset.

The second linear regression with 10 PCs and age as features
resulted in a Linear Regression Correlation of r = 0.90 (p = 0.01%),
with a root mean squared error of 3.2 years (Fig. 4).

Discussion

We aimed to investigate preHD neural reserve mechanisms with a
DCM analysis of cortical motor function. Our results indicate a crucial
role of PMdwhich adds to that of the pre- and caudal SMAdemonstrated
here and in an earlier analysis using standard activation based methods
(Klöppel et al., 2009).

Connectivity analysis

TheDCManalysis confirmsmotor system connectivity characteristics
similar in strength and polarity compared to previous studies (see e.g.
Grefkes et al., 2008a). Condition-independent connectivity was wide-
spread within the network and included anterior–posterior inhibitory
connectivity towards SPC in HC (Boudrias et al., 2012), which did not
reach significance in preHD. Significant modulatory connections were
found for the experimental factors speed and complexity, involving con-
nections towards cSMA in the former and pSMA in the latter in both sub-
ject groups (Fig. 2).

Between-group analysis of DCM parameters

Although not statistically significant after correction for multiple
comparisons, we observed more positive condition-independent and
modulatory connectivities between several regions in preHD compared
to controls (Fig. 2, Inline Supplementary Table S3): A decline in inhibito-
ry condition-independent connections points to a reduction of inhibition
from supplementary and premotor regions towards bilateral SPC in
preHD. This is well in line with the task-dependent correlations of
PMd–SPC connections discussed below, which gain strength with ap-
proaching disease onset, and alsowith findings of decreased effective in-
hibitory connectivity in ageing (Boudrias et al., 2012).

The between-group comparison reveals a reorganisation of the
motor system in the pre-manifest state with a task performed equally
well by both subject groups (Klöppel et al., 2009). Higher task demands
are likely to reveal even stronger disease effects as shown byWolf et al.
(2008b), who found aberrant fronto-striatal coupling in preHD only
under high working memory load. Of note, our sample is relatively far
from clinical disease onset.

DCMnow allowed us to identify the network characteristics underly-
ing differential recruitment of the SMA observed in the preHD group in a
previous analysis of the same data (Klöppel et al., 2009). Greater effects
of ‘complexity’ from cSMA to pSMA and from lPMd to pSMA in the
preHD group, and increased condition-independent connections from
pSMA to lSPC, may well be a reflection of those observations. In
Klöppel et al. (2009), we reported greater activation of cSMA in preHD
and correlations of pSMA and cSMA with approaching disease onset.
An equivalent of these findings may be the tighter couplings of DCM pa-
rameters connected to SMA in preHD compared to controls.

http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
http://dx.doi.org/10.1016/j.neuroimage.2013.02.058
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Prediction of yto with DCM parameters and assessment of potential NR

Our results from twomultiple regressionmodels show an association
between connection strengths and yto. In a hierarchical multiple linear
regressionmodel with age as a covariate, one PC contributed significant-
ly to the prediction of yto. On inspection, and after controlling for age,we
found three significant correlations of connection strengths loading high
on this PC, involving PMd and SPC bilaterally: First, the positive correla-
tions of complexity-associated modulation from rSPC to rPMd with yto
suggest that rSPC exerts less influence on rPMd with approaching dis-
ease onset, when the task becomes cognitively challenging. Second, the
positive correlation of the fixed connection from rPMd to lPMd suggests
an attenuated impact of rPMd on lPMd with approaching clinical
onset independently of task demands. This could point to declining
interhemispheric influences from rPMd to lPMd or – as the disease pro-
gresses – an inhibition of lPMd.

Third, and most important in relation to NR, is the increasing
complexity-associated modulation of lPMd to lSPC connectivity with
approaching disease onset. Of note, we found a similar increase in con-
nectivity in corresponding areas in the right hemisphere, which did not
remain significant after controlling for age (see e.g. Tanaka and
Watanabe, 2011, for findings on compensation of ipsilateral sensorimo-
tor regions to maintain motor functioning). Connections from PMd to
SPC are part of widely connected parieto-frontal circuits (Iacoboni,
2006;Matelli and Luppino, 2001). A key role of the lPMd inmotor control
has been suggested previously (Schluter et al., 1998). In the context of
HD and preHD, SPC has been discussed in terms of a parietal shift
(Bartenstein et al., 1997) and parietal interaction effects (Klöppel et al.,
2009) reported in activation analyses. Our findings suggest that this
shift is expressed as enhanced positive effective connectivity from PMd
to SPC, whilst connectivity in the other direction declines (Fig. 3).
Hence, with greater proximity to symptom onset, the SPC is more
strongly recruited by PMd to ensure motor functioning in periods of
cognitive challenge (Rizzolatti et al., 1997; Rushworth et al., 2003).
Again, a role of parietal cortex in compensation has recently been
discussed byWolf et al. (2012b), who found the default mode network,
which includes the inferior parietal lobe, to be functionally persistent in
preHD. Furthermore, it interacts with PMd for reaching movements as
revealed by TMS (Busan et al., 2009), whilst PMd overall exerts a
steering role in the guidance of hand movements (Groppa et al., 2012;
Koch et al., 2006; O'Shea et al., 2007a; Schluter et al., 1998). Taken to-
gether, the interplay of parietal and frontal motor areas during action
execution is highly variable and task-dependent (Koch and Rothwell,
2009; Rounis et al., 2005), which is confirmed by the identification of
PMd–SPC correlations solely in complex task conditions. These connec-
tivity results therefore complement those from the standard activation
analyses.

A second linear regression analysis confirmed the predictive power
of all derived connection strengths. Of note, we compared the predic-
tions of the biophysical DCM to predictions of the genetically motivated
model by Langbehn et al. (2004) without knowing the true value of yto.
To address the predictive power of any model, a longitudinal design in-
cluding the individual conversion times would be needed.

Limitations

A relatively small sample may explain the absence of significance
between group differences after correction for multiple comparisons.
Nevertheless, the approach was based on a robustly activating experi-
mental paradigm and we obtained precise predictions of the yto with
DCM parameters in such a small sample (Friston, 2012). Thus, confi-
dence in the connectivity strengths derived from our network analysis
method is enhanced.We emphasise that results from connectivity anal-
yses do not always reveal effects analogous to activation analyses (see
e.g.Wolf et al., 2012a) and should be interpreted and viewed as a differ-
ent approach to the same data but not as another means of drawing the
same conclusions (Fox and Friston, 2012; Friston, 2009). Furthermore,
we realize that the DCMparameters are conditional on themodel tested
and that we cannot interpret model structure itself in the current study
(Daunizeau et al., 2011; Seghier et al., 2010); here, the scope was infer-
ence onmodel parameters. For inference onmodel structure, a Bayesian
Model Selection analysiswould have been needed (Stephan et al., 2009;
Stephan et al., 2010; Supplement 1) to determinewhichof the investigat-
ed connections best explain the data. In summary, connectivity-related
research questions lead to findings involving very similar regions to
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those identified in activation analyses. However the results reveal the na-
ture of other additional relationships between the regions in the context
of our experimental groups and the tasks at hand.

Conclusions and implications

Taken together, the current study indicates that the potential NR
for motor function in a preHD sample is provided by differential sup-
port by pre- and caudal SMA during task-induced challenges driven
by PMd, and an important role for the positive directed interaction
from bilateral PMd to SPC, which gains strength with proximity to
clinical onset.

As mentioned in the introduction, HD comprises a combination of
developmental and state markers. To identify state markers, we
performed a comparison against a control group. Additional correla-
tion analyses in the HD group with yto were performed to focus on
developmental trait markers with the limitation of cross-sectional de-
sign. As gene-mutation carriers showed matched performance com-
pared to controls and because we focus on changes correlating with
yto, the observed changes are likely to be compensatory in nature.

Identifying potential NR mechanisms and explanations for the neu-
ral underpinnings of CRmay suggest therapeutic interventions to cush-
ion and delay cognitive decline in various disorders (see e.g. discussions
in Buhmann et al., 2005; Eickhoff et al., 2008; Grefkes et al., 2008b).
Such interventions, designed to stimulate CR, have already been suc-
cessfully applied in animal models (Nithianantharajah and Hannan,
2011; Nithianantharajah et al., 2009; Valenzuela, 2008; Wood et al.,
2011). In humans, interventions exploiting connectivity analyses
could involve locally exciting TMS or tDCS protocols (e.g. Grefkes et
al., 2010),whichhave shownpromising relationshipswithDCMparam-
eters in ageing and healthy controls (Boudrias et al., 2012; Sarfeld et al.,
2012). Such protocols should focus on regions predominantlymodulat-
ing others that subtend a specific cognitive domain so as to increase a
specific cognitive reserve.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.02.058.
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