45 research outputs found

    Appetitive Operant Conditioning in Mice: Heritability and Dissociability of Training Stages

    Get PDF
    To study the heritability of different training stages of appetitive operant conditioning, we carried out behavioral screening of 5 standard inbred mouse strains, 28 recombinant-inbred (BxD) mouse lines and their progenitor strains C57BL/6J and DBA/2J. We also computed correlations between successive training stages to study whether learning deficits at an advanced stage of operant conditioning may be dissociated from normal performance in preceding phases of training. The training consisted of two phases: an operant nose poking (NP) phase, in which mice learned to collect a sucrose pellet from a food magazine by NP, and an operant lever press and NP phase, in which mice had to execute a sequence of these two actions to collect a food pellet. As a measure of magazine oriented exploration, we also studied the nose poke entries in the food magazine during the intertrial intervals at the beginning of the first session of the nose poke training phase. We found significantly heritable components in initial magazine checking behavior, operant NP and lever press–NP. Performance levels in these phases were positively correlated, but several individual strains were identified that showed poor lever press–NP while performing well in preceding training stages. Quantitative trait loci mapping revealed suggestive likelihood ratio statistic peaks for initial magazine checking behavior and lever press–NP. These findings indicate that consecutive stages toward more complex operant behavior show significant heritable components, as well as dissociability between stages in specific mouse strains. These heritable components may reside in different chromosomal areas

    Proton Pump Inhibitor Use, Fatigue, and Health-Related Quality of Life in Kidney Transplant Recipients:Results From the TransplantLines Biobank and Cohort Study

    Get PDF
    Rationale &amp; Objective: Prior studies report that the use of proton pump inhibitors (PPIs) can adversely affect gut microbiota and gastrointestinal uptake of micronutrients, in particular iron and magnesium, and are used frequently by kidney transplant recipients. Altered gut microbiota, iron deficiency, and magnesium deficiency have been implicated in the pathogenesis of chronic fatigue. Therefore, we hypothesized that PPI use may be an important and underappreciated cause of fatigue and reduced health-related quality of life (HRQoL) in this population. Study Design: Cross-sectional study. Setting &amp; Participants: Kidney transplant recipients (≥1 year after transplantation) enrolled in the TransplantLines Biobank and Cohort Study. Exposure: PPI use, PPI type, PPI dosage, and duration of PPI use. Outcome: Fatigue and HRQoL, assessed using the validated Checklist Individual Strength 20 Revised questionnaire and Short Form-36 questionnaire. Analytical Approach: Logistic and linear regression. Results: We included 937 kidney transplant recipients (mean age 56 ± 13 years, 39% female) at a median of 3 (1-10) years after transplantation. PPI use was associated with fatigue severity (regression coefficient 4.02, 95% CI, 2.18 to 5.85, P &lt; 0.001), a higher risk of severe fatigue (OR 2.05, 95% CI, 1.48 to 2.84, P &lt; 0.001), lower physical HRQoL (regression coefficient −8.54, 95% CI, −11.54 to −5.54, P &lt; 0.001), and lower mental HRQoL (regression coefficient −4.66, 95% CI, −7.15 to −2.17, P &lt; 0.001). These associations were independent of potential confounders including age, time since transplantation, history of upper gastrointestinal disease, antiplatelet therapy, and the total number of medications. They were present among all individually assessed PPI types and were dose dependent. Duration of PPI exposure was only associated with fatigue severity. Limitations: Residual confounding and inability to assess causal relationships. Conclusions: PPI use is independently associated with fatigue and lower HRQoL among kidney transplant recipients. PPI use might be an easily accessible target for alleviating fatigue and improving HRQoL among kidney transplant recipients. Further studies examining the effect of PPI exposure in this population are warranted. Plain-Language Summary: In this observational study, we investigated the association of proton pump inhibitors with fatigue and health-related quality of life among kidney transplant recipients. Our data showed that proton pump inhibitors were independently associated with fatigue severity, severe fatigue, and lower physical and mental health-related quality of life. These associations were present among all individually assessed proton pump inhibitor types and were dose dependent. While we await future studies on this topic, proton pump inhibitor use might be an easily accessible target for alleviating fatigue and improving health-related quality of life among kidney transplant recipients.</p

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed &gt;50 loci at which common variants with minor allele frequency &gt;5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value &lt; 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR &lt; 0.05) genes and 127 significantly (FDR &lt; 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Corrigendum: 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

    Get PDF
    This corrects the article DOI: 10.1038/srep45040

    Correlated shadow fading in wireless networks and its effect on call dropping

    No full text

    Correlated shadow-fading in wireless networks and its effect on call dropping

    No full text

    Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia.

    Get PDF
    Rationale: In both obesity and chronic obstructive pulmonary disease altered oxygen tension in the adipose tissue (AT) has been suggested to dysfunction, subsequently contributing to metabolic complications. effects of chronic hypoxia on AT function will add to our understanding complex pathophysiology of alterations in AT inflammation, metabolism seen in both obesity and COPD. This study investigated the inflammatory metabolic profile of AT after chronic hypoxia. Methods: Fifty-two-week- C57Bl/6J mice were exposed to chronic hypoxia (8% O2) or normoxia for 21 after which AT and plasma were collected. Adipocyte size, AT gene inflammatory and metabolic genes, AT macrophage density and circulating concentrations were measured. Results: Food intake and body weight initiation of hypoxia. However, whereas food intake normalized after 10 lower body weight persisted. Chronic hypoxia markedly reduced AT mass adipocyte size. AT macrophage density and expression of Emr1, Ccl2, Lep was decreased, whereas Serpine1 and Adipoq expression levels were chronic hypoxia. Concomitantly, chronic hypoxia increased AT expression regulators of oxidative metabolism and markers of mitochondrial function lipolysis. Circulating IL-6 and PAI-1 concentrations were increased and concentration was decreased after chronic hypoxia. Conclusion: Chronic associated with decreased rather than increased AT inflammation, and decreased fat mass and adipocyte size. Furthermore, our data indicate chronic hypoxia is accompanied by significant alterations in AT expression, pointing towards an enhanced AT metabolic rate
    corecore