46 research outputs found

    High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    No full text
    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre optic sensor array systems. This architecture employs a distributed erbium doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources

    Antiretroviral therapy and the prevalence and incidence of diabetes [2] (multiple letters)

    Get PDF
    In the study by Brown et al,1 the authors did not mention several limitations that might have an important impact on the interpretation of the results. First, the study only included men, who were mostly white (approximately 86%). Therefore, the results cannot be extrapolated to women and other ethnic groups. Second, the family history of diabetes was not ascertained in the study participants, and this could have confounded the magnitude of differences in prevalence and incidence of diabetes between the 2 study groups. Third, the reported prevalence and incidence rates of diabetes were likely to be overestimated because the diagnosis of diabetes was not confirmed by a repeated measurement of fasting plasma glucose

    Parton distributions in the virtual photon target up to NNLO in QCD

    Full text link
    Parton distributions in the virtual photon target are investigated in perturbative QCD up to the next-to-next-to-leading order (NNLO). In the case Λ2P2Q2\Lambda^2 \ll P^2 \ll Q^2, where Q2-Q^2 (P2-P^2) is the mass squared of the probe (target) photon, parton distributions can be predicted completely up to the NNLO, but they are factorisation-scheme-dependent. We analyse parton distributions in two different factorisation schemes, namely MSˉ\bar{\rm MS} and DISγ{\rm DIS}_{\gamma} schemes, and discuss their scheme dependence. We show that the factorisation-scheme dependence is characterised by the large-xx behaviours of quark distributions. Gluon distribution is predicted to be very small in absolute value except in the small-xx region.Comment: 28 pages, 5 figures, version to appear in Eur. Phys. J.

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Parallel-plate integrated optic high-voltage sensor

    No full text

    An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution.

    Get PDF
    BACKGROUND: Typhoid fever is a major global health problem, the control of which is hindered by lack of a suitable animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%-75% in typhoid-naive volunteers when ingested with sodium bicarbonate solution. METHODS: Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred (temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated. RESULTS: Two dose levels (10(3) or 10(4) colony-forming units) were required to achieve the primary objective, resulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no anti-Vi antibody responses were detected. CONCLUSIONS: Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution can be performed safely using an ambulant-model design to advance understanding of host-pathogen interactions and immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control
    corecore