193 research outputs found

    Stratification of sunspot umbral dots from inversion of Stokes profiles recorded by Hinode

    Full text link
    This work aims to constrain the physical nature of umbral dots (UDs) using high-resolution spectropolarimetry. Full Stokes spectra recorded by the spectropolarimeter on Hinode of 51 UDs in a sunspot close to the disk center are analyzed. The height dependence of the temperature, magnetic field vector, and line-of-sight velocity across each UD is obtained from an inversion of the Stokes vectors of the two FeI lines at 630 nm. No difference is found at higher altitudes (-3 <= log(tau) <= -2) between the UDs and the diffuse umbral background. Below that level the difference rapidly increases, so that at the continuum formation level (log(tau) = 0) we find on average a temperature enhancement of 570 K, a magnetic field weakening of 510 G, and upflows of 800 m/s for peripheral UDs, whereas central UDs display an excess temperature of on average 550 K, a field weakening of 480 G, and no significant upflows. The results for, in particular, the peripheral UDs, including cuts of magnetic vector and velocity through them, look remarkably similar to the output of recent radiation MHD simulations. They strongly suggest that UDs are produced by convective upwellings

    First polarimetric observations and modeling of the FeH F^4 Delta-X^4 Delta system

    Full text link
    Lines of diatomic molecules are more temperature and pressure sensitive than atomic lines, which makes them ideal tools for studying cool stellar atmospheres an internal structure of sunspots and starspots. The FeH F^4 Delta-X^4 Delta system represents such an example that exhibits in addition a large magnetic field sensitivity. The current theoretical descriptions of these transitions including the molecular constants involved are only based on intensity measurements because polarimetric observations have not been available so far, which limits their diagnostic value. We present for the first time spectropolarimetric observations of the FeH F^4 Delta-X^4 Delta system measured in sunspots to investigate their diagnostic capabilities for probing solar and stellar magnetic fields. We investigate whether the current theoretical model of FeH can reproduce the observed Stokes profiles including their magnetic properties. The polarimetric observations are compared with synthetic Stokes profiles modeled with radiative transfer calculations. This allows us to infer the temperature and the magnetic field strength of the observed sunspots. We find that the current theory successfully reproduces the magnetic properties of a large number of lines in the FeH F^4 Delta-X^4 Delta system. In a few cases the observations indicate a larger Zeeman splitting than predicted by the theory. There, our observations have provided additional constraints, which allowed us to determine empirical molecular constants. The FeH F^4 Delta-X^4 Delta system is found to be a very sensitive magnetic diagnostic tool. Polarimetric data of these lines provide us with more direct information to study the coolest parts of astrophysical objects.Comment: 4 pages, 3 figure

    Bovine oocytes in secondary follicles grow and acquire meiotic competence in severe combined immunodeficient mice

    Get PDF
    A rigorous methodology is developed that addresses numerical and statistical issues when developing group contribution (GC) based property models such as regression methods, optimization algorithms, performance statistics, outlier treatment, parameter identifiability, and uncertainty of the prediction. The methodology is evaluated through development of a GC method for the prediction of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) for pure components. The results showed that robust regression lead to best performance statistics for parameter estimation. The bootstrap method is found to be a valid alternative to calculate parameter estimation errors when underlying distribution of residuals is unknown. Many parameters (first, second, third order group contributions) are found unidentifiable from the typically available data, with large estimation error bounds and significant correlation. Due to this poor parameter identifiability issues, reporting of the 95% confidence intervals of the predicted property values should be mandatory as opposed to reporting only single value prediction, currently the norm in literature. Moreover, inclusion of higher order groups (additional parameters) does not always lead to improved prediction accuracy for the GC-models; in some cases, it may even increase the prediction error (hence worse prediction accuracy). However, additional parameters do not affect calculated 95% confidence interval. Last but not least, the newly developed GC model of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) shows predictions of great accuracy and quality (the most data falling within the 95% confidence intervals) and provides additional information on the uncertainty of each prediction compared to other Δ<i>H</i><sub>c</sub><sup>o</sup> models reported in literature

    Modified p-modes in penumbral filaments?

    Full text link
    Aims: The primary objective of this study is to search for and identify wave modes within a sunspot penumbra. Methods: Infrared spectropolarimetric time series data are inverted using a model comprising two atmospheric components in each spatial pixel. Fourier phase difference analysis is performed on the line-of-sight velocities retrieved from both components to determine time delays between the velocity signals. In addition, the vertical separation between the signals in the two components is calculated from the Stokes velocity response functions. Results: The inversion yields two atmospheric components, one permeated by a nearly horizontal magnetic field, the other with a less-inclined magnetic field. Time delays between the oscillations in the two components in the frequency range 2.5-4.5 mHz are combined with speeds of atmospheric wave modes to determine wave travel distances. These are compared to expected path lengths obtained from response functions of the observed spectral lines in the different atmospheric components. Fast-mode (i.e., modified p-mode) waves exhibit the best agreement with the observations when propagating toward the sunspot at an angle ~50 degrees to the vertical.Comment: 8 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    On detectability of Zeeman broadening in optical spectra of F- and G-dwarfs

    Full text link
    We investigate the detectability of Zeeman broadening in optical Stokes I spectra of slowly rotating sun-like stars. To this end, we apply the LTE spectral line inversion package SPINOR to very-high quality CES data and explore how fit quality depends on the average magnetic field, Bf . One-component (OC) and two-component (TC) models are adopted. In OC models, the entire surface is assumed to be magnetic. Under this assumption, we determine formal 3{\sigma} upper limits on the average magnetic field of 200 G for the Sun, and 150 G for 61 Vir (G6V). Evidence for an average magnetic field of ~ 500 G is found for 59 Vir (G0V), and of ~ 1000 G for HD 68456 (F6V). A distinction between magnetic and non-magnetic regions is made in TC models, while assuming a homogeneous distribution of both components. In our TC inversions of 59 Vir, we investigate three cases: both components have equal temperatures; warm magnetic regions; cool magnetic regions. Our TC model with equal temperatures does not yield significant improvement over OC inversions for 59 Vir. The resulting Bf values are consistent for both. Fit quality is significantly improved, however, by using two components of different temperatures. The inversions for 59 Vir that assume different temperatures for the two components yield results consistent with 0 - 450 G at the formal 3{\sigma} confidence level. We thus find a model dependence of our analysis and demonstrate that the influence of an additional temperature component can dominate over the Zeeman broadening signature, at least in optical data. Previous comparable analyses that neglected effects due to multiple temperature components may be prone to the same ambiguities.Comment: 18 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

    Full text link
    Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospheric magnetic vector from the inversion of ideal and noisy Stokes parameters influence the extrapolation of nonlinear force-free magnetic fields. Methods: We compute nonlinear force-free magnetic fields based on simulated vector magnetograms, which have been produced by the inversion of Stokes profiles, computed froma 3-D radiation MHD simulation snapshot. These extrapolations are compared with extrapolations starting directly from the field in the MHD simulations, which is our reference. We investigate how line formation and instrumental effects such as noise, limited spatial resolution and the effect of employing a filter instrument influence the resulting magnetic field structure. The comparison is done qualitatively by visual inspection of the magnetic field distribution and quantitatively by different metrics. Results: The reconstructed field is most accurate if ideal Stokes data are inverted and becomes less accurate if instrumental effects and noise are included. The results demonstrate that the non-linear force-free field extrapolation method tested here is relatively insensitive to the effects of noise in measured polarization spectra at levels consistent with present-day instruments. Conclusions heading: Our results show that we can reconstruct the coronal magnetic field as a nonlinear force-free field from realistic photospheric measurements with an accuracy of a few percent, at least in the absence of sunspots.Comment: A&A, accepted, 9 Pages, 4 Figure

    Morphology of powerful suction organs from blepharicerid larvae living in raging torrents

    Get PDF
    BackgroundSuction organs provide powerful yet dynamic attachments for many aquatic animals, including octopus, squid, remora, and clingfish. While the functional morphology of suction organs from some cephalopods and fishes has been investigated in detail, there are only few studies on such attachment devices in insects. Here we characterise the morphology and ultrastructure of the suction attachment organs of net-winged midge larvae (genus Liponeura; Diptera: Blephariceridae) – aquatic insects that live on rocks in rapid alpine waterways where flow speeds can reach 3 m s− 1 – using scanning electron microscopy, confocal laser scanning microscopy, and X-ray computed micro-tomography (micro-CT). Furthermore, we study the function of these organs in vivo using interference reflection microscopy.ResultsWe identified structural adaptations important for the function of the suction attachment organs in L. cinerascens and L. cordata. First, a dense array of spine-like microtrichia covering each suction disc comes into contact with the substrate upon attachment, analogous to hairy structures on suction organs from octopus, clingfish, and remora fish. These spine-like microtrichia may contribute to the seal and provide increased shear force resistance in high-drag environments. Second, specialised rim microtrichia at the suction disc periphery were found to form a continuous ring in close contact and may serve as a seal on a variety of surfaces. Third, a V-shaped cut on the suction disc (“V-notch“) is actively opened via two cuticular apodemes inserting on its flanks. The apodemes are attached to dedicated V-notch opening muscles, thereby providing a unique detachment mechanism. The complex cuticular design of the suction organs, along with specialised muscles that attach to them, allows blepharicerid larvae to generate powerful attachments which can withstand strong hydrodynamic forces and quickly detach for locomotion.ConclusionThe suction organs from Liponeura are underwater attachment devices specialised for resisting extremely fast flows. Structural adaptations from these suction organs could translate into future bioinspired attachment systems that perform well on a wide range of surfaces

    Simulation of a flux emergence event and comparison with observations by Hinode

    Full text link
    We study the observational signature of flux emergence in the photosphere using synthetic data from a 3D MHD simulation of the emergence of a twisted flux tube. Several stages in the emergence process are considered. At every stage we compute synthetic Stokes spectra of the two iron lines Fe I 6301.5 {\AA} and Fe I 6302.5 {\AA} and degrade the data to the spatial and spectral resolution of Hinode's SOT/SP. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve various atmospheric parameters and compare the results with recent Hinode observations. During the emergence sequence, the spectral lines sample different parts of the rising flux tube, revealing its twisted structure. The horizontal component of the magnetic field retrieved from the simulations is close to the observed values. The flattening of the flux tube in the photosphere is caused by radiative cooling, which slows down the ascent of the tube to the upper solar atmosphere. Consistent with the observations, the rising magnetized plasma produces a blue shift of the spectral lines during a large part of the emergence sequence.Comment: A&A Letter, 3 figure

    Comparing magnetic field extrapolations with measurements of magnetic loops

    Full text link
    We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred structure of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations better than the linear force-free approximation, although no free parameters are available in the former case.Comment: 5 pages, 3 figure

    Spatial variations in the field of velocities and real solar granulation

    Get PDF
    In this paper, the physical conditions within the inhomogeneous solar atmosphere have been reconstructed by means of solving the inverse problem of Non Local Thermodynamic Equilibrium (NLTE) radiative transfer. The profiles of λ=523.42\lambda=523.42 nm FeI spectral line of high spatial and time resolution were used as observational data. The velocity field has been studied for the real solar granulation in superadiabatic layer and overshooting convection region. Also, we investigate the vertical structure of inhomogeneous solar photosphere and consider penetration of granules from convective region into upper layers of stable atmosphere. The microturbulent velocity appears to be minimal at the bottom of overshooting convection region and increases sharply through superadiabatic layer and upper photosphere. High-turbulent layers emerge either in the central part of a flow or at the boundary of an incipient flow with following drift toward the centre of the flow. Wide descending flows tend to disintegrate into structures having turbulence augmented, these structures correspond to the flows of matter. High microturbulence of the intensive flows provokes steep temperature depression in upper photosphere leading to the second inversion of temperature for the intergranules. The inversion of vertical velocities is observed to be frequent in the solar granulation. Some of the convective flows reach the minimum temperature region. Vertical convective velocities of the matter flows were found to be smaller in the middle and upper photosphere. Also, the effect of finite resolution on the spacial variations of the velocities in solar photosphere has been estimated.Comment: 8 pages, 7 figure
    • …
    corecore