187 research outputs found
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Product Lifecycle Management for Digital Transformation of Industries.
Currently, organizations tend to reuse their past knowledge to make good decisions quickly and effectively and thus, to improve their business processes performance in terms of time, quality, efficiency, etc. Process mining techniques allow organizations to achieve this objective through process discovery. This paper develops a semi-automated approach that supports decision making by discovering decision rules from the past process executions. It identifies a ranking of the process patterns that satisfy the discovered decision rules and which are the most likely to be executed by a given user in a given context. The approach is applied on a supervision process of the gas network exploitationFU
Long-term results of 32-mm alumina-on-alumina THA for avascular necrosis of the femoral head
BACKGROUND:
Ceramic bearings in total hip arthroplasty (THA) have been introduced in clinical practice to minimize the problem of polyethylene particle-induced osteolysis. The aim of the study is to report the results of 68 consecutive alumina-on-alumina THAs done in 61 patients for avascular necrosis (AVN) of the femoral head.
MATERIALS AND METHODS:
In all implants a press-fit cup was used; it was combined with a 32-mm alumina head and with titanium-alloy stems. The mean age at surgery was 50 years. At an average follow-up of 13 years two hips have been revised, one for periprosthetic infection and one for excessive abduction of the cup.
RESULTS:
No revision for aseptic loosening is recorded; one anatomical cementless femoral stem had radiological evidence of definite aseptic loosening. No dislocations occurred, and no osteolysis was observed.
CONCLUSIONS:
The results support the application of alumina-alumina THA for long-lasting replacements
A review of applying second-generation wavelets for noise removal from remote sensing data.
The processing of remotely sensed data includes compression, noise reduction, classification, feature extraction, change detection and any improvement associated with the problems at hand. In the literature, wavelet methods have been widely used for analysing remote sensing images and signals. The second-generation of wavelets, which is designed based on a method called the lifting scheme, is almost a new version of wavelets, and its application in the remote sensing field is fresh. Although first-generation wavelets have been proven to offer effective techniques for processing remotely sensed data, second-generation wavelets are more efficient in some respects, as will be discussed later. The aim of this review paper is to examine all existing studies in the literature related to applying second-generation wavelets for denoising remote sensing data. However, to make a better understanding of the application of wavelet-based denoising methods for remote sensing data, some studies that apply first-generation wavelets are also presented. In the part of hyperspectral data, there is a focus on noise removal from vegetation spectrum
Pleiotropic Roles of a Ribosomal Protein in Dictyostelium discoideum
The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over- or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over- or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect – specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels
The Rts1 Regulatory Subunit of Protein Phosphatase 2A Is Required for Control of G1 Cyclin Transcription and Nutrient Modulation of Cell Size
The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates
- …