59 research outputs found

    CMS Forward-Backward MSGC milestone

    Get PDF
    The CMS MF1 milestone was set in order to evaluate system aspects of the CMS forward-backward MSGC tracker, to check the design and feasibility of mass production and to set up assembly and test procedures. We describe the construction and the experience gained with the operation of a system of 38 MSGC detectors assembled in six multi-substrate detector modules corresponding to the geometry of the forward-backward MSGC tracker in CMS. These modules were equipped with MSGCs mounted side by side, forming a continuous detector surface of about 0.2 m2. Different designs were tried for these modules. The problems encountered are presented with the proposed solutions. Operation conditions for the 38 MSGCs are reported from an exposure to a muon beam at the CERN SPS. Gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with the detection efficiency, the spatial resolution, alignment and edge studies

    Differences in gait patterns, pain, function and quality of life between males and females with knee osteoarthritis: a clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to gain a deeper understanding of the gender differences in knee osteoarthritis (OA) by evaluating the differences in gait spatio-temporal parameters and the differences in pain, quality of life and function between males and females suffering from knee OA.</p> <p>Methods</p> <p>49 males and 85 females suffering from bilateral medial compartment knee OA participated in this study. Each patient underwent a computerized gait test and completed the WOMAC questionnaire and the SF-36 health survey. Independent t-tests were performed to examine the differences between males and females in age, BMI, spatio-temporal parameters, the WOMAC questionnaire and the SF-36 health survey.</p> <p>Results</p> <p>Males and females had different gait patterns. Although males and females walked at the same walking speed, cadence and step length, they presented significant differences in the gait cycle phases. Males walked with a smaller stance and double limb support, and with a larger swing and single limb support compared to females. In addition, males walked with a greater toe out angle compared to females. While significant differences were not found in the WOMAC subscales, females consistently reported higher levels of pain and disability.</p> <p>Conclusion</p> <p>The spatio-temporal differences between genders may suggest underlying differences in the gait strategies adopted by males and females in order to reduce pain and cope with the loads acting on their affected joints, two key aspects of knee OA. These gender effects should therefore be taken into consideration when evaluating patients with knee OA.</p> <p>Trial Registration</p> <p>The study is registered in the NIH clinical trial registration, protocol No. NCT00599729.</p

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    The theory of the firm and its critics: a stocktaking and assessment

    Get PDF
    Includes bibliographical references."Prepared for Jean-Michel Glachant and Eric Brousseau, eds. New Institutional Economics: A Textbook, Cambridge, Cambridge University Press.""This version: August 22, 2005."Since its emergence in the 1970s the modern economic or Coasian theory of the firm has been discussed and challenged by sociologists, heterodox economists, management scholars, and other critics. This chapter reviews and assesses these critiques, focusing on behavioral issues (bounded rationality and motivation), process (including path dependence and the selection argument), entrepreneurship, and the challenge from knowledge-based theories of the firm

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Dynamic stability during running gait termination: Predictors for successful control of forward momentum in children and adults.

    No full text
    Reported differences between children and adults with respect to COM horizontal and vertical position to maintain dynamic stability during running deceleration suggest that this relationship may not be as important in children. This study challenged the current dynamic stability paradigm by determining the features of whole body posture that predicted forward velocity and momentum of running gait termination in adults and children. Sixteen adults and 15 children ran as fast as possible and stopped at pre-determined location. Separate regression analyses determined whether COM posterior and vertical positions and functional limb length (distance between COM and stance foot) predicted velocity and momentum for adults and children. COM posterior position was the strongest predictor of forward velocity and momentum in both groups supporting the previously established relationship during slower tasks. COM vertical position also predicted momentum in children, not adults. Higher COM position in children was related to greater momentum; consistent with previously reported differences between children and adults in COM position across running deceleration. COM vertical position was related to momentum but not velocity in children suggesting that strategies used to terminate running may be driven by demands imposed not just by velocity, but also the mass being decelerated

    Dynamic stability during running gait termination: Differences in strategies between children and adults to control forward momentum.

    No full text
    Rapid deceleration during running is key for successful participation in most childhood activities and sports; this requires modulation of body momentum and consequent challenges to postural equilibrium. The purpose of this study was to investigate the strategies employed by adults and children to control forward momentum and terminate running gait. Sixteen young adults and 15 pre-pubertal children completed two tasks as fast as possible: an unobstructed run (RUN) and a run and stop (STOP) at a pre-determined location. For STOP, center of mass (COM) approach velocity and momentum prior to deceleration and spatiotemporal characteristics and COM position during deceleration were compared between groups. Position and velocity variables were normalized to height and maximum velocity during RUN, respectively. Children used fewer steps with relatively longer step length to decelerate over a relatively longer distance and longer time than adults. Children approached at higher relative velocity than adults, but adults approached with greater momentum. Adults positioned their COM lower and more posterior than children throughout deceleration. Our results suggest that pre-pubertal children and young adults employ different strategies to modulate body momentum, with adults exhibiting mechanics characteristic of a more stable strategy. Despite less stable mechanics, children and adults achieved similar success

    Effects of Practice on the Control of Whole-Body Momentum in Active Children and Adults

    No full text
    The purpose of this study was to determine the effects of practice on performance of a running task requiring maximal speed and accurate termination. Physically active pre-pubertal boys and men ran as fast as possible and stopped at a pre-determined target location. Twenty-five trials were collected and comparisons made between first five (early) and last five (late) trials. Approach velocity, normalized approach velocity (percent of maximal sprint velocity, %Vmax), stopping distance from target, and success rate were calculated. Self-efficacy for task performance and fatigue reports were collected prior to trials. Children ran more slowly than adults in absolute terms but performed at higher relative velocity. Both groups displayed similar accuracy and percentages of successful trials across early and late practice. Adults increased approach velocity and %Vmax from early to late; children, already higher in relative maximal velocity, did not change. Self-efficacy paralleled performance findings and correlated with %Vmax and success rate; both groups reported higher self-efficacy for late compared with early. With practice, adults increased approach velocity and children did not; however, children appeared to be performing at a higher relative level from the beginning, perhaps reflecting their more substantial recent histories of similar physical activity and limiting further effects of practice

    Predictors of Frontal Plane Knee Moments During Side-Step Cutting to 45 and 110 Degrees in Men and Women: Implications for Anterior Cruciate Ligament Injury.

    No full text
    To compare frontal plane knee moments, and kinematics and kinetics associated with knee valgus moments between cutting to 45 and 110 degrees, and to determine the predictive value of kinematics and ground reaction forces (GRFs) on knee valgus moments when cutting to these angles. Also, to determine whether sex differences exist in kinematics and kinetics when cutting to 45 and 110 degrees.Cross-sectional study.Laboratory setting.Forty-five (20 females) healthy young adult soccer athletes aged 16 to 23 years.Kinematic and kinetic variables were compared between randomly cued side-step cutting maneuvers to 45 and 110 degrees. Predictors of knee valgus moment were determined for each task.Kinematic variables: knee valgus angle, hip abduction, and internal rotation angles. Kinetic variables: vertical, posterior, and lateral GRFs, and knee valgus moment.Knee valgus moments were greater when cutting to 110 degrees compared with 45 degrees, and females exhibited greater moments than males. Vertical and lateral GRFs, hip internal rotation angle, and knee valgus angle explained 63% of the variance in knee valgus moment during cutting to 45 degrees. During cutting to 110 degrees, posterior GRF, hip internal rotation angle, and knee valgus angle explained 41% of the variance in knee valgus moment.Cutting tasks with larger redirection demands result in greater knee valgus moments. Similar factors, including shear GRFs, hip internal rotation, and knee valgus position contribute to knee valgus loading during cuts performed to smaller (45 degrees) and larger (110 degrees) angles.Reducing vertical and shear GRFs during cutting maneuvers may reduce knee valgus moments and thereby potentially reduce risk for anterior cruciate ligament injury
    corecore