346 research outputs found

    Local heat flux and energy loss in a 2D vibrated granular gas

    Full text link
    We performed event-driven simulations of a two-dimensional granular gas between two vibrating walls and directly measured the local heat flux and energy dissipation rate in the stationary state. Describing the local heat flux as a function of the coordinate x in the direction perpendicular to the driving walls, we use a generalization of Fourier's law, q_x(x) = kappa d_x T(x) + mu d_x rho(x), to relate the local heat flux to the local gradients of the temperature and density. This ansatz accounts for the fact that density gradients also generate heat flux, not only temperature gradients. The transport coefficients kappa and mu are assumed to be independent of x, and we check the validity of this assumption in the simulations. Both kappa and mu are determined for different system parameters, in particular, for a wide range of coefficients of restitution. We also compare our numerical results to existing hydrodynamic theories. Agreement is found for kappa for very small inelasticities only. Beyond this region, kappa and mu exhibit a striking non-monotonic behavior.Comment: 8 pages, 5 figure

    Local Equation of State and Velocity Distributions of a Driven Granular Gas

    Full text link
    We present event-driven simulations of a granular gas of inelastic hard disks with incomplete normal restitution in two dimensions between vibrating walls (without gravity). We measure hydrodynamic quantities such as the stress tensor, density and temperature profiles, as well as velocity distributions. Relating the local pressure to the local temperature and local density, we construct a local constitutive equation. For strong inelasticities the local constitutive relation depends on global system parameters, like the volume fraction and the aspect ratio. For moderate inelasticities the constitutive relation is approximately independent of the system parameters and can hence be regarded as a local equation of state, even though the system is highly inhomogeneous with heterogeneous temperature and density profiles arising as a consequence of the energy injection. Concerning the local velocity distributions we find that they do not scale with the square root of the local granular temperature. Moreover the high-velocity tails are different for the distribution of the x- and the y-component of the velocity, and even depend on the position in the sample, the global volume fraction, and the coefficient of restitution.Comment: 14 pages, 14 figures of which Figs. 13a-f and Fig. 14 are archived as separate .gif files due to upload-size limitations. A version of the paper including all figures in better quality can be downloaded at http://www.theorie.physik.uni-goettingen.de/~herbst/download/LocEqSt.ps.gz (3.8 MB, ps.gz) or at http://www.theorie.physik.uni-goettingen.de/~herbst/download/LocEqSt.pdf (4.9 MB, pdf

    Rotational spectroscopy of the thioformaldehyde isotopologues H2_2CS and H2_2C34^{34}S in four interacting excited vibrational states and an account on the rotational spectrum of thioketene, H2_2CCS

    Full text link
    An investigation of the rotational spectrum of the interstellar molecule thioformaldehyde between 110 and 377 GHz through a pyrolysis reaction revealed a multitude of absorption lines assignable to H2_2CS and H2_2C34^{34}S in their lowest four excited vibrational states besides lines of numerous thioformaldehyde isotopologues in their ground vibrational states reported earlier as well as lines pertaining to several by-products. Additional transitions of H2_2CS in its lowest four excited vibrational states were recorded in selected regions between 571 and 1386 GHz. Slight to strong Coriolis interactions occur between all four vibrational states with the exception of the two highest lying states because both are totally symmetric vibrations. We present combined analyses of the ground and the four interacting states for our rotational data of H2_2CS and H2_2C34^{34}S. The H2_2CS data were supplemented with two sets of high-resultion IR data in two separate analyses. The v2=1v_2 = 1 state has been included in analyses of Coriolis interactions of low-lying fundamental states of H2_2CS for the first time and this improved the quality of the fits substantially. We extended furthermore assignments in JJ of transition frequencies of thioketene in its ground vibrational state.Comment: 23 pages including figures, tables, and references; Mol. Phys., accepted (for the Tim Lee memorial issue

    Mopra line survey mapping of NGC6334I and I(N) at 3mm

    Full text link
    A 5'x5' region encompassing NGC6334I and I(N) has been mapped at a wavelength of 3mm (from 83.5 to 115.5GHz) with the Mopra telescope at an angular resolution between 33 arcsec and 36 arcsec. This investigation has made use of the recently installed 3mm MMIC receiver and the Mopra Spectrometer (MOPS) with broadband capabilities permitting total coverage of the entire frequency range with just five different observations. In total, the spatial distribution of nineteen different molecules, ions and radicals, along with additional selected isotopologues have been studied. Whilst most species trace the sites of star formation, CH_3CN appears to be most closely associated with NGC6334I and I(N). Both CN and C_2H appear to be widespread, tracing gas that is not associated with active star formation. Both N_2H^+ and HC_3N closely resemble dust continuum emission, showing they are reliable tracers of dense material, as well as the youngest stages of high mass star formation. Hot (E_u/k>100K) thermal CH_3OH emission is preferentially found towards NGC6334I, contrasting with I(N), where only cold (E_u/k<22K) thermal CH_3OH emission is found.Comment: Accepted by MNRA

    First astronomical detection of the CF+ ion

    Full text link
    We report the first astronomical detection of the CF+ (fluoromethylidynium) ion obtained by recent observations of its J = 1 - 0 (102.6 GHz), J = 2 - 1 (205.2 GHz), and J = 3 - 2 (307.7 GHz) pure rotational emissions toward the Orion Bar. Our search for CF+, carried out using the IRAM 30m and APEX 12m telescopes, was motivated by recent theoretical models that predict CF+ abundances of a few x E-10 in UV-irradiated molecular regions where C+ is present. The measurements confirm the predictions. They provide support for our current theories of interstellar fluorine chemistry, which suggest that hydrogen fluoride should be ubiquitous in interstellar gas clouds.Comment: 2 pages, 1 figure (uses iaus.sty), to appear in IAU Symposium No. 231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C. Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press

    Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422

    Get PDF
    It remains a key challenge to establish the molecular content of different components of low-mass protostars, like their envelopes and disks, and how this depends on the evolutionary stage and/or environment of the young stars. Observations at submillimeter wavelengths provide a direct possibility to study the chemical composition of low-mass protostars through transitions probing temperatures up to a few hundred K in the gas surrounding these sources. This paper presents a large molecular line survey of the deeply embedded protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA) - including images of individual lines down to approximately 1.5-3" (190-380 AU) resolution. More than 500 individual transitions are identified related to 54 molecular species (including isotopologues) probing temperatures up to about 550 K. Strong chemical differences are found between the two components in the protostellar system with a separation between, in particular, the sulfur- and nitrogen-bearing species and oxygen-bearing complex organics. The action of protostellar outflow on the ambient envelope material is seen in images of CO and SiO and appear to influence a number of other species, including (deuterated) water, HDO. The effects of cold gas-phase chemistry is directly imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+ and subsequently N2D+ in the outer envelope where CO freezes-out on dust grains.Comment: Accepted for publication in A&A, 30 pages, 22 figure

    TIMASSS: The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey. I. Observations, calibration and analysis of the line kinematics

    Get PDF
    While unbiased surveys observable from ground-based telescopes have previously been obtained towards several high mass protostars, very little exists on low mass protostars. To fill up this gap, we carried out a complete spectral survey of the bands at 3, 2, 1 and 0.8 mm towards the solar type protostar IRAS16293-2422. The observations covered about 200\,GHz and were obtained with the IRAM-30m and JCMT-15m telescopes. Particular attention was devoted to the inter-calibration of the obtained spectra with previous observations. All the lines detected with more than 3 sigma and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. More than 4000 lines were detected (with sigma \geq 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (~2/3) of the lines are weak and due to complex organic molecules. The analysis of the profiles of more than 1000 lines belonging 70 species firmly establishes the presence of two distinct velocity components, associated with the two objects, A and B, forming the IRAS16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 Mo object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 Mo. The difference in the rest velocities of both objects is consistent with the hypothesis that the source B rotates around the source A. This spectral survey, although obtained with single-dish telescope with a low spatial resolution, allows to separate the emission from 2 different components, thanks to the large number of lines detected. The data of the survey are public and can be retrieved on the web site http://www-laog.obs.ujf-grenoble.fr/heberges/timasss.Comment: 41 pages (26 pages of online Tables), 7 Tables and 6 Figure

    Charged Boson Stars and Vacuum Instabilities

    Get PDF
    We consider charged boson stars and study their effect on the structure of the vacuum. For very compact particle like ``stars", with constituent mass mm_{*} close to the Planck mass mPlm_{Pl}, i.e. m2=O(αmPl2)m_{*}^{2} = {\cal O} (\alpha m_{Pl}^{2}), we argue that there is a limiting total electric charge ZcZ_c, which, primarily, is due to the formation of a pion condensate (Zc0.5α1eZ_{c} \simeq 0.5\alpha^{-1}e, where α\alpha is the fine structure constant and ee is the electric charge of the positron). If the charge of the ``star" is larger than ZcZ_c we find numerical evidence for a complete screening indicating a limiting charge for a very compact object. There is also a less efficient competing charge screening mechanism due to spontaneous electron-positron pair creation in which case Zcα1eZ_{c} \simeq \alpha^{-1}e. Astrophysical and cosmological abundances of charged compact boson stars are briefly discussed in terms of dark matter.Comment: latex,29p,9 figs not included can be sent by fax on request,ITP 92-24,ZU-TH-38/9

    Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Get PDF
    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.Comment: 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letter
    corecore