171 research outputs found

    CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius

    Full text link
    We study the components of cool and warm/hot gas in the circumgalactic medium (CGM) of simulated galaxies and address the relative production of OVI by photoionization versus collisional ionization, as a function of halo mass, redshift, and distance from the galaxy halo center. This is done utilizing two different suites of zoom-in hydro-cosmological simulations, VELA (6 halos; z>1z>1) and NIHAO (18 halos; to z=0z=0), which provide a broad theoretical basis because they use different codes and physical recipes for star formation and feedback. In all halos studied in this work, we find that collisional ionization by thermal electrons dominates at high redshift, while photoionization of cool or warm gas by the metagalactic radiation takes over near z2z\sim2. In halos of 1012M\sim 10^{12}M_{\odot} and above, collisions become important again at z<0.5z<0.5, while photoionization remains significant down to z=0z=0 for less massive halos. In halos with Mv>3×1011 MM_{\textrm v}>3\times10^{11}~M_{\odot}, at z0z\sim 0 most of the photoionized OVI is in a warm, not cool, gas phase (T3×105T\lesssim 3\times 10^5~K). We also find that collisions are dominant in the central regions of halos, while photoionization is more significant at the outskirts, around RvR_{\textrm v}, even in massive halos. This too may be explained by the presence of warm gas or, in lower mass halos, by cool gas inflows

    МОРФО-ФУНКЦІОНАЛЬНІ ЗМІНИ ЩИТОПОДІБНОЇ ЗАЛОЗИ У ЖІНОК РЕПРОДУКТИВНОГО ВІКУ В ЙОДОДЕФІЦИТНОМУ РЕГІОНІ

    Get PDF
    The thesis discovers morphological and functional changes in thyroid body of women in reproductive age in terms of iodine deficiency.У статті висвітлюється питання про зміни морфо-функціонального стану щитоподібної залози у жінок репродуктивного віку в умовах йододефіцит

    On the Connection Between Metal Absorbers and Quasar Nebulae

    Get PDF
    We establish a simple model for the distribution of cold gas around L* galaxies using a large set of observational constraints on the properties of strong MgII absorber systems. Our analysis suggests that the halos of L* galaxies are filled with cool gaseous clouds having sizes of order 1kpc and densities of ~10^{-2} cm^{-3}. We then investigate the physical effects of cloud irradiation by a quasar and study the resulting spectral signatures. We show that quasar activity gives rise to (i) extended narrow-line emission on ~100kpc scales and (ii) an anisotropy in the properties of the absorbing gas arising from the geometry of the quasar radiation field. Provided that quasars reside in halos several times more massive than those of L* galaxies, our model predictions appear to be in agreement with observations of narrow emission-line nebulae around quasars and the recent detections of ~100kpc cold gaseous envelopes around those objects, suggesting a common origin for these phenomena. We discuss the implications of our results for understanding absorption systems, probing quasar environments at high redshifts, and testing the quasar unification scheme.Comment: 15 pages, 13 figures (ApJ submitted

    Turbulence and the formation of filaments, loops and shock fronts in NGC 1275 in the Perseus Galaxy Cluster

    Full text link
    NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular HαH{\alpha}-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the intracluster medium, thus limiting further starburst activity in NGC1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC1275. While the AGN mechanism is the main heating source, the supernovae are crucial to isotropize the energy distribution.Comment: accepted by ApJ Letter

    Confined Population III Enrichment and the Prospects for Prompt Second-Generation Star Formation

    Full text link
    It is widely recognized that nucleosynthetic output of the first, Population III supernovae was a catalyst defining the character of subsequent stellar generations. Most of the work on the earliest enrichment was carried out assuming that the first stars were extremely massive and that the associated supernovae were unusually energetic, enough to completely unbind the baryons in the host cosmic minihalo and disperse the synthesized metals into the intergalactic medium. Recent work, however, suggests that the first stars may in fact have been somewhat less massive, with a characteristic mass scale of a few tens of solar masses. We present a cosmological simulation following the transport of the metals synthesized in a Population III supernova assuming that it had an energy of 1e51 ergs, compatible with standard Type II supernovae. A young supernova remnant is inserted in the first star's relic HII region in the free expansion phase and is followed for 40 Myr employing adaptive mesh refinement and Lagrangian tracer particle techniques. The supernova remnant remains partially trapped within the minihalo and the thin snowplow shell develops pronounced instability and fingering. Roughly half of the ejecta turn around and fall back toward the center of the halo, with 1% of the ejecta reaching the center in 30 kyr and 10% in 10 Myr. The average metallicity of the combined returning ejecta and the pristine filaments feeding into the halo center from the cosmic web is 0.001 - 0.01 Z_sun, but the two remain unmixed until accreting onto the central hydrostatic core that is unresolved at the end of the simulation. We conclude that if Population III stars had less extreme masses, they promptly enriched the host minihalos with metals and triggered Population II star formation.Comment: 13 pages, 8 figure

    Revisiting the He II to H I ratio in the Intergalactic Medium

    Get PDF
    We estimate the He II to H I column density ratio, \eta = N(He II)/N(H I), in the intergalactic medium towards the high redshift (z_{em} = 2.885) bright quasar QSO HE 2347-4342 using Voigt-profile fitting of the H I transitions in the Lyman series and the He II Lyman-α\alpha transition as observed by the FUSE satellite. In agreement with previous studies, we find that η>50\eta > 50 in most of the Lyman-α\alpha forest except in four regions where it is much smaller (η1020\eta \sim 10-20) and therefore inconsistent with photo-ionization by the UV background flux. We detect O VI and C IV absorption lines associated with two of these regions (zabsz_{\rm abs} = 2.6346 and 2.6498). We show that if we constrain the fit of the H I and/or He II absorption profiles with the presence of metal components, we can accommodate η\eta values in the range 15-100 in these systems assuming broadening is intermediate between pure thermal and pure turbulent. While simple photo-ionization models reproduce the observed N(O VI)/N(C IV) ratio, they fail to produce low η\eta values contrary to models with high temperature (i.e T 105\ge 10^5 K). The Doppler parameters measured for different species suggest a multiphase nature of the absorbing regions. Therefore, if low η\eta values were to be confirmed, we would favor a multi-phase model in which most of the gas is at high temperature (>> 105^5 K) but the metals and in particular C IV are due to lower temperature (\sim few 10410^4 K) photo-ionized gas.Comment: Accepted for publication in the MNRAS (11 pages, 9 figures, 2 tables

    Highly Ionized Collimated Outflow from HE 0238 - 1904

    Full text link
    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238 - 1904 (z_em ~ 0.629). Based on the similarities in the absorption line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed N(Ne VIII), N(O VI) and N(Mg X) from a single phase whereas the low ionization species (e.g. N III, N IV, O IV) originate from a different phase. The measured N(Ne VIII)/N(O VI) ratio is found to be remarkably similar (within a factor of ~ 2) in several individual absorption components kinematically spread over ~ 1800 km/s. Under photoionization this requires a fine tuning between hydrogen density (nH) and the distance of the absorbing gas from the QSO. Alternatively this can also be explained by collisional ionization in hot gas with T > 10^{5.7} K. Long-term stability favors the absorbing gas being located outside the broad line region (BLR). We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.Comment: Minor revision (accepted for publication in MNRAS letter

    Positron annihilation spectrum from the Galactic Centre region observed by SPI/INTEGRAL, revisited: annihilation in a cooling ISM?

    Full text link
    We analyse SPI/INTEGRAL data on the 511 keV line from the Galactic Centre, accumulated over ~6 years of observations. We decompose the X-ray and soft gamma-ray emission of the central part of the Milky Way into a relatively compact "Bulge" and a more extended "Disk" components and report their spectral properties. The Bulge component shows a prominent 511 keV line and essentially no flux at 1.8 MeV, while the Disk component on the contrary contains a prominent 1.8 MeV line and a very weak annihilation line. We show that the spectral shape of the annihilation radiation (the narrow 511 keV line and the associated othro-positronium continuum) is surprisingly well described by a model of annihilation of hot positrons in a radiatively cooling interstellar medium (ISM). The model assumes that positrons are initially injected into a hot (106\sim 10^6~K), volume filling ISM, which is allowed to freely cool via radiative losses. The annihilation time in such a medium is longer than the cooling time for temperatures higher than a few 10410^{4}~K. Thus, most of the positrons annihilate only after the gas has cooled down to 105\sim 10^5~K, giving rise to annihilation emission characteristic of a warm, ionized ISM.Comment: 19 pages, 15 figures. Accepted by MNRA

    High ions towards white dwarfs: circumstellar line shifts and stellar temperature

    Full text link
    Based on a compilation of OVI, CIV, SiIV and NV data from IUE, FUSE, GHRS, STIS, and COS, we derive an anti- correlation between the stellar temperature and the high ion velocity shift w.r.t. to the photosphere, with positive (resp. negative) velocity shifts for the cooler (resp. hotter) white dwarfs. This trend probably reflects more than a single process, however such a dependence on the WD's temperature again favors a CS origin for a very large fraction of those ion absorptions, previously observed with IUE, HST-STIS, HST-GHRS, FUSE, and now COS, selecting objects for which absorption line radial velocities, stellar effective temperature and photospheric velocity can be found in the literature. Interestingly, and gas in near-equilibrium in the star vicinity. It is also probably significant that the temperature that corresponds to a null radial velocity, i.e. \simeq 50,000K, also corresponds to the threshold below which there is a dichotomy between pure or heavy elements atmospheres as well as some temperature estimates for and a form of balance between radiation pressure and gravitation. This is consistent with ubiquitous evaporation of orbiting dusty material. Together with the fact that the fraction of stars with (red-or blue-) shifted lines and the fraction of stars known to possess heavy species in their atmosphere are of the same order, such a velocity-temperature relationship is consistent with quasi-continuous evaporation of orbiting CS dusty material, followed by accretion and settling down in the photosphere. In view of these results, ion measurements close to the photospheric or the IS velocity should be interpreted with caution, especially for stars at intermediate temperatures. While tracing CS gas, they may be erroneously attributed to photospheric material or to the ISM, explaining the difficulty of finding a coherent pattern of the high ions in the local IS 3D distribution.Comment: Accepted by A&A. Body of paper identical to v1. This submission has a more appropriate truncation of the original abstrac

    Multiwavelength Campaign on Mrk 509 X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopy

    Full text link
    Active Galactic Nuclei often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance (RR) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on the number density, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on the distance between 100--200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra.Comment: Accepted to A&A (06 APR 2012
    corecore