26 research outputs found

    Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium

    Get PDF
    Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound‐associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE (2)) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β‐catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE (2)‐Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE (2) and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Genetic Overlap Between Alzheimer’s Disease and Bipolar Disorder Implicates the MARK2 and VAC14 Genes

    Get PDF
    Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR=0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR=0.022, opposite direction of effect). Conclusions: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Gut-Pancreatic Axis AMPlified in Islets of Langerhans

    Get PDF
    Microbially derived metabolites in the intestine regulate host immunity and impact disease pathophysiology in various organs. Sun et al. (2015) suggest a direct effect of microbial metabolites on pancreatic endocrine cells in regulating type 1 diabetes pathophysiology

    Cellular differentiation: Potential insight into butyrate paradox?

    No full text
    We recently demonstrated that cellular responses to butyrate depend on the differentiation status of the colonic epithelium. Here, we apply the implications of these findings to cancer biology and discuss discrepancies in the effects of butyrate on cancer progression

    Validation of near infrared fluorescence (NIRF) probes in vivo with dual laser NIRF endoscope.

    Get PDF
    PURPOSE:The development of NIRF cathepsin activity probes offered the ability to visualize tumor associated tumor reaction and act as a surrogate marker to delineate the dysplastic lesions. One major type is a NIRF substrate of cathepsins (SBP), which is involved in catalytic way to produce high levels of fluorescence emission. The other major type (ABP) reacts with active cathepsins in stoichiometric manner since they bind covalently with their active center. Little is known about the sensitivity and the specificity of the NIRF probes to detect autochthonous developed dysplastic lesions. Dual laser NIRF endoscope provides a good tool to determine the efficiency of various NIRF probes in vivo in the same lesions. EXPERIMENTAL DESIGN:In the current study, we validated both types of NIRF probes by using the dual laser NIRF endoscope to detect lesions colon cancer mouse model (TS4Cre/cAPC +/lox). RESULTS:The dual laser NIRF endoscope is emitting equal power with both lasers. It can detect with the same efficiency in 680 mode, as well as, 750 mode when NIFR probes of the same scaffold in vivo. When SBP and ABP were used, our results showed both probes are efficient enough to detect large polyps but small dysplastic lesions could not efficiently imaged with the ABP. CONCLUSIONS:The dual laser NIRF endoscope is a powerful tool to validate probes. The probes that react catalytically with the active center of cathepsins are more efficient than the ones that react stoichiometrically in detecting small lesions

    A Common Mechanism Links Activities of Butyrate in the Colon

    No full text
    Two biological activities of butyrate in the colon (suppression of proliferation of colonic epithelial stem cells and inflammation) correlate with inhibition of the activity of histone deacetylases. Cellular and biochemical studies of molecules similar in structure to butyrate, but different in molecular details (functional groups, chain-length, deuteration, oxidation level, fluorination, or degree of unsaturation), demonstrated that these activities were sensitive to molecular structure, and were compatible with the hypothesis that butyrate acts by binding to the Zn<sup>2+</sup> in the catalytic site of histone deacetylases. Structure–activity relationships drawn from a set of 36 compounds offer a starting point for the design of new compounds targeting the inhibition of histone deacetylases. The observation that butyrate was more potent than other short-chain fatty acids is compatible with the hypothesis that crypts evolved (at least in part), to separate stem cells at the base of crypts from butyrate produced by commensal bacteria
    corecore