64 research outputs found
Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry
We identify 885,503 type 1 quasar candidates to i<22 using the combination of
optical and mid-IR photometry. Optical photometry is taken from the Sloan
Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey
(SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from
the Wide-Field Infrared Survey Explorer (WISE) "ALLWISE" data release and
several large-area Spitzer Space Telescope fields. Selection is based on a
Bayesian kernel density algorithm with a training sample of 157,701
spectroscopically-confirmed type-1 quasars with both optical and mid-IR data.
Of the quasar candidates, 733,713 lack spectroscopic confirmation (and 305,623
are objects that we have not previously classified as photometric quasar
candidates). These candidates include 7874 objects targeted as high probability
potential quasars with 3.5<z<5 (of which 6779 are new photometric candidates).
Our algorithm is more complete to z>3.5 than the traditional mid-IR selection
"wedges" and to 2.2<z<3.5 quasars than the SDSS-III/BOSS project. Number counts
and luminosity function analysis suggests that the resulting catalog is
relatively complete to known quasars and is identifying new high-z quasars at
z>3. This catalog paves the way for luminosity-dependent clustering
investigations of large numbers of faint, high-redshift quasars and for further
machine learning quasar selection using Spitzer and WISE data combined with
other large-area optical imaging surveys.Comment: 54 pages, 17 figures; accepted by ApJS Data for tables 1 and 2
available at
http://www.physics.drexel.edu/~gtr/outgoing/optirqsos/data/master_quasar_catalogs.011414.fits.bz2
and
http://www.physics.drexel.edu/~gtr/outgoing/optirqsos/data/optical_ir_quasar_candidates.052015.fits.bz
The Ultraviolet-to-Mid-Infrared Spectral Energy Distribution of Weak Emission Line Quasars
We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey
(SDSS) quasars at 2.7 <= z <= 5.9 which have weak or undetectable
high-ionization emission lines in their rest-frame ultraviolet (UV) spectra
(hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with
SDSS spectra and ground-based, near-infrared (IR) photometry of these sources
to produce a large inventory of spectral energy distributions (SEDs) of WLQs
across the rest-frame ~0.1-5 mum spectral band. The SEDs of our sources are
inconsistent with those of BL Lacertae objects which are dominated by
synchrotron emission due to a jet aligned close to our line-of-sight, but are
consistent with the SED of ordinary quasars with similar luminosities and
redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust
emission. This indicates that broad emission lines in WLQs are intrinsically
weak, rather than suffering continuum dilution from a jet, and that such
sources cannot be selected efficiently from traditional photometric surveys.Comment: 10 pages (emulateapj), 4 figures. Accepted for publication in Ap
CANDELS: The progenitors of compact quiescent galaxies at z~2
We combine high-resolution HST/WFC3 images with multi-wavelength photometry
to track the evolution of structure and activity of massive (log(M*) > 10)
galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact,
star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star
formation rates qualify them as likely progenitors of compact, quiescent,
massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific
star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at
the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently.
These properties suggest that cSFGs are formed by gas-rich processes (mergers
or disk-instabilities) that induce a compact starburst and feed an AGN, which,
in turn, quench the star formation on dynamical timescales (few 10^8 yr). The
cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5.
After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs.
Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs
in size, while less-gas-rich mergers and other secular mechanisms shepherd
(larger) SFGs as later arrivals to the red sequence. In summary, we propose two
evolutionary scenarios of QG formation: an early (z > 2), fast-formation path
of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the
quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs
without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure
A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation
We present Hubble Space Telescope Wide Field Camera 3 slitless grism
spectroscopy of 28 emission-line galaxies at z~2, in the GOODS-S region of the
Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The
high sensitivity of these grism observations, with 1-sigma detections of
emission lines to f > 2.5x10^{-18} erg/s/cm^2, means that the galaxies in the
sample are typically ~7 times less massive (median M_* = 10^{9.5} M_sun) than
previously studied z~2 emission-line galaxies. Despite their lower mass, the
galaxies have OIII/Hb ratios which are very similar to previously studied z~2
galaxies and much higher than the typical emission-line ratios of local
galaxies. The WFC3 grism allows for unique studies of spatial gradients in
emission lines, and we stack the two-dimensional spectra of the galaxies for
this purpose. In the stacked data the OIII emission line is more spatially
concentrated than the Hb emission line with 98.1 confidence. We additionally
stack the X-ray data (all sources are individually undetected), and find that
the average L(OIII)/L(0.5-10 keV) ratio is intermediate between typical z~0
obscured active galaxies and star-forming galaxies. Together the compactness of
the stacked OIII spatial profile and the stacked X-ray data suggest that at
least some of these low-mass, low-metallicity galaxies harbor weak active
galactic nuclei.Comment: ApJ accepted. 8 pages, 6 figure
The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results
We present the final data from the Sloan Digital Sky Survey Reverberation
Mapping (SDSS-RM) project, a precursor to the SDSS-V Black Hole Mapper
Reverberation Mapping program. This data set includes 11-year photometric and
7-year spectroscopic light curves for 849 broad-line quasars over a redshift
range of 0.1<z<4.5 and a luminosity range of Lbol=1E44-47.5 erg/s, along with
spectral and variability measurements. We report 23, 81, 125, and 110
reverberation mapping lags (relative to optical continuum variability) for
broad Halpha, Hbeta, MgII and CIV using the SDSS-RM sample, spanning much of
the luminosity and redshift ranges of the sample. Using 30 low-redshift RM AGNs
with dynamical-modeling black hole masses, we derive a new estimate of the
average virial factor of =0.62+-0.07 for the line dispersion measured
from the RMS spectrum. The intrinsic scatter of individual virial factors is
0.31+-0.07 dex, indicating a factor of two systematic uncertainty in RM black
hole masses. Our lag measurements reveal significant R-L relations for Hbeta
and MgII at high redshift, consistent with the latest measurements based on
heterogeneous samples. While we are unable to robustly constrain the slope of
the R-L relation for CIV given the limited dynamical range in luminosity, we
found substantially larger scatter in CIV lags at fixed L1350. Using the
SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for
Hbeta, MgII and CIV, which are consistent with their respective RM masses as
well as between the SE recipes from two different lines, over the luminosity
range probed by our sample. The new Hbeta and MgII recipes are approximately
unbiased estimators at given RM masses, but there are systematic biases in the
CIV recipe. The intrinsic scatter of SE masses around RM masses is ~0.45 dex
for Hbeta and MgII, increasing to ~0.58 dex for CIV.Comment: 33 pages. Data products available at
ftp://quasar.astro.illinois.edu/public/sdssrm/final_result
The Sloan Digital Sky Survey Reverberation Mapping project : key results
Funding: Y.S. acknowledges support from NSF grants AST-1715579 and AST-2009947. C.J.G. acknowledges support from NSF grants AST-2009949 and AST-2108667. J.I.L. is supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a Schmidt Futures program. Y.H. was supported as an Eberly Research Fellow by the Eberly College of Science at the Pennsylvania State University. J.R.T. acknowledges support from NSF grants CAREER-1945546, AST-2009539, and AST-2108668. W.N.B. acknowledges support from NSF grant AST-2106990 and the Eberly Endowment at Penn State. L.C.H. was supported by the National Science Foundation of China (11721303, 11991052, 12011540375, 12233001) and the China Manned Space Project (CMS-CSST-2021-A04, CMS-CSST-2021-A06). C.T. acknowledges Tsinghua University for the support to her work.We present the final data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping (RM) project, a precursor to the SDSS-V Black Hole Mapper RM program. This data set includes 11 yr photometric and 7 yr spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1 < z < 4.5 and a luminosity range of Lbol = 1044−47.5 erg s−1, along with spectral and variability measurements. We report 23, 81, 125, and 110 RM lags (relative to optical continuum variability) for broad Hα, Hβ, Mg ii, and C iv using the SDSS-RM sample, spanning much of the luminosity and redshift ranges of the sample. Using 30 low-redshift RM active galactic nuclei with dynamical-modeling black hole masses, we derive a new estimate of the average virial factor of ⟨logf⟩ = 0.62±0.07 for the line dispersion measured from the rms spectrum. The intrinsic scatter of individual virial factors is 0.31 ± 0.07 dex, indicating a factor of 2 systematic uncertainty in RM black hole masses. Our lag measurements reveal significant R–L relations for Hβ and Mg ii at high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of the R–L relation for C iv given the limited dynamic range in luminosity, we found substantially larger scatter in C iv lags at fixed L1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hβ, Mg ii, and C iv, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hβ and Mg ii recipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the C iv recipe. The intrinsic scatter of SE masses around RM masses is ∼0.45 dex for Hβ and Mg ii, increasing to ∼0.58 dex for C iv.Peer reviewe
The MOSDEF survey:AGN multi-wavelength identification, selection biases and host galaxy properties
We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on
the identification, selection biases, and host galaxy properties of 55 X-ray,
IR and optically-selected active galactic nuclei (AGN) at . We
obtain rest-frame optical spectra of galaxies and AGN and use the BPT diagram
to identify optical AGN. We examine the uniqueness and overlap of the AGN
identified at different wavelengths. There is a strong bias against identifying
AGN at any wavelength in low mass galaxies, and an additional bias against
identifying IR AGN in the most massive galaxies. AGN hosts span a wide range of
star formation rate (SFR), similar to inactive galaxies once stellar mass
selection effects are accounted for. However, we find (at
significance) that IR AGN are in less dusty galaxies with relatively higher SFR
and optical AGN in dusty galaxies with relatively lower SFR. X-ray AGN
selection does not display a bias with host galaxy SFR. These results are
consistent with those from larger studies at lower redshifts. Within
star-forming galaxies, once selection biases are accounted for, we find AGN in
galaxies with similar physical properties as inactive galaxies, with no
evidence for AGN activity in particular types of galaxies. This is consistent
with AGN being fueled stochastically in any star-forming host galaxy. We do not
detect a significant correlation between SFR and AGN luminosity for individual
AGN hosts, which may indicate the timescale difference between the growth of
galaxies and their supermassive black holes
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
- …