96 research outputs found

    Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome

    Get PDF
    Funding Information: This work was supported by Academy of Finland grants 285461 (H.T.), 330678 (H.T., J.R.), 277194 (H.L.), and 290677 (S.M.). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing synchrotron access for crystal data collection. We thank Prof. Janne Ihalainen (University of Jyväskylä) for all the help in all aspects of the paper, Prof. Gerrit Groenhof (University of Jyväskylä) for support, and Prof. Nikolai V. Tkachenko (Tampere University) for help and facilities for time-resolved absorption spectroscopy. We also thank M.Sc. Alli Liukkonen (University of Jyväskylä) and Dr. Heikki Häkkänen (University of Jyväskylä) for the assistance in laboratory and spectroscopy, respectively. Funding Information: This work was supported by Academy of Finland grants 285461 (H.T.), 330678 (H.T., J.R.), 277194 (H.L.), and 290677 (S.M.). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing synchrotron access for crystal data collection. We thank Prof. Janne Ihalainen (University of Jyväskylä) for all the help in all aspects of the paper, Prof. Gerrit Groenhof (University of Jyväskylä) for support, and Prof. Nikolai V. Tkachenko (Tampere University) for help and facilities for time-resolved absorption spectroscopy. We also thank M.Sc. Alli Liukkonen (University of Jyväskylä) and Dr. Heikki Häkkänen (University of Jyväskylä) for the assistance in laboratory and spectroscopy, respectively. Publisher Copyright: © 2022, The Author(s).Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.Peer reviewe

    Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome

    Get PDF
    Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.</p

    Spectrophotometric method for simultaneous measurement of zinc and copper in metalloproteins using 4-(2-pyridylazo)resorcinol

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.ab.2019.03.007. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Bound metals are observed in a great many natural proteins, where they perform diverse roles in determining protein folding, stability and function. Due to the broad impact of bound metals on biophysical and biochemical properties of proteins, it is valuable to have accurate and facile methods for determining the metal content of proteins. Here we describe an optimized methodology using 4-(2-pyridylazo)resorcinol (PAR) to simultaneously quantify two metal ions in solution. The assay is demonstrated for quantification of Cu2+ and Zn2+ ions in human Cu, Zn superoxide dismutases (SOD1s); however, the method is general and can be applied to various combinations of metal ions. Advantages of the assay are that it is rapid and inexpensive, requires little sample and preparation, and has simple data analysis. We show that spectral decomposition software can accurately resolve the absorption bands of Cu2+ and Zn2+ with high accuracy and precision. Using the PAR assay, we determined that metal binding is altered in disease-associated mutants of SOD1, with comparable results to those determined by ICP-AES. In addition, we highlight key issues for using spectrophotometric chelators such as PAR for metal analysis of proteins.This work was supported by the Canadian Institutes of Health Research (CIHR) and National Sciences and Engineering Research Council of Canada (NSERC)

    Metal-Free ALS Variants of Dimeric Human Cu,Zn-Superoxide Dismutase Have Enhanced Populations of Monomeric Species

    Get PDF
    Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals

    The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer

    Get PDF
    Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1

    Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival

    Get PDF
    The nature of the “toxic gain of function” that results from amyotrophic lateral sclerosis (ALS)-, Parkinson-, and Alzheimer-related mutations is a matter of debate. As a result no adequate model of any neurodegenerative disease etiology exists. We demonstrate that two synergistic properties, namely, increased protein aggregation propensity (increased likelihood that an unfolded protein will aggregate) and decreased protein stability (increased likelihood that a protein will unfold), are central to ALS etiology. Taken together these properties account for 69% of the variability in mutant Cu/Zn-superoxide-dismutase-linked familial ALS patient survival times. Aggregation is a concentration-dependent process, and spinal cord motor neurons have higher concentrations of Cu/Zn-superoxide dismutase than the surrounding cells. Protein aggregation therefore is expected to contribute to the selective vulnerability of motor neurons in familial ALS

    The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome : a UV–vis absorption spectroscopy study

    No full text
    Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an “open” (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a “closed” (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any “gating”. Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.peerReviewe
    corecore