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1. Introduction 

1.1 ALS and SOD1 
In 1993, a genetic link was established between amyotrophic lateral sclerosis (ALS) and 

mutant forms of Cu,Zn superoxide dismutase (SOD1) (Deng et al. 1993; Rosen et al. 1993), 
an antioxidant enzyme that catalyzes the dismutation of the damaging free radical 

superoxide anion (O2-) to hydrogen peroxide (H2O2) and diatomic oxygen (O2) via cyclic 
reduction and oxidation of a protein-bound Cu ion (Valentine et al. 2005). Today, over 

150, predominantly missense mutations have been identified at ~75 sites spread 
throughout the protein (http://alsod.iop.kcl.ac.uk/). SOD1 mutations are found in ~15-

20% of inherited or familial ALS (fALS) cases and in a small percentage of sporadic ALS 
(sALS) cases (Rosen et al. 1993; Kato et al. 2000; Liu et al. 2009; Forsberg et al. 2011). fALS 

accounts for ~10% of all ALS cases and so SOD1 mutations comprise ~1.5-2% of all ALS 
cases, but nevertheless represent a major known cause of the disease. The clinical 

symptoms of fALS and sALS are similar, yet fALS patients with SOD1 mutations have an 
earlier age of disease onset than sALS (by ~10 years) (Wijesekera and Leigh 2009). 

Furthermore, while the age of disease onset has not been identified as statistically 
different between different SOD1 mutations, disease duration for each mutation is often 

different, ranging from shorter (e.g. ~1 year for A4V, the most common mutation in North 
America) than the typical 3-5 years to longer (e.g. ~18 years for H46R) (Cudkowicz et al. 

1997; Valentine et al. 2005; Wang et al. 2008). In humans and murine models of ALS, 
mutations in the gene encoding SOD1 are typically autosomal dominant and are 

associated with a toxic gain of function. Despite extensive research, the molecular basis 

for mutant SOD1 toxicity remains unclear (Valentine et al. 2005; Boillee et al. 2006; Ilieva 
et al. 2009). Extensive research has been conducted on SOD1-linked fALS, as 

understanding and treatment of this disease may be relevant to ALS in general. While 
ALS patients share many clinical symptoms, numerous genes have been linked to ALS, 

and there is evidence for differences in pathology related to both genetic and 
environmental factors; hence, ALS is a syndrome and not a single disease with unique 

pathology (Cozzolino et al. 2008).  
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Currently, there are two prevailing hypotheses for the toxic gain of SOD1 function that is 
observed in ALS: 1) new toxic enzymatic activity, and 2) protein misfolding resulting in 
formation of toxic aggregates (Valentine et al. 2005; Andersen 2006; Pasinelli and Brown 
2006; Cozzolino et al. 2008; Turner and Talbot 2008). Since toxic enzymatic activity can 
damage the protein and cause aggregation, and conversely aggregation may result in toxic 
activity, these two hypotheses are not mutually exclusive. Theories involving gain of toxic 
activity involve altered metal binding by SOD1, resulting in the generation of reactive 
oxygen species, such as damaging hydroxyl and peroxynitrite radicals (Kurahashi et al. 
2001; Alvarez et al. 2004). Alternatively, there is extensive evidence that ALS belongs to a 
growing group of protein misfolding diseases (Valentine et al. 2005; Chiti and Dobson 2006; 
Turner and Talbot 2008; Chiti and Dobson 2009; Deng et al. 2011). Protein inclusions, or 
aggregates, observed in the motor neurons and glial cells stain immunopositive for SOD1 in 
SOD1-linked fALS and some sALS patients (Kato et al. 2000; Liu et al. 2009; Forsberg et al. 
2011) and are observed in mutant SOD1 animal models of ALS (Bruijn et al. 1998; Johnston 
et al. 2000). Thus, a major hypothesis in the field of ALS research is that SOD1 mutations 
decrease protein stability, alter protein folding and metal binding, and/or cause changes in 
other biophysical properties of the protein, resulting in an increased propensity of mutant 
SOD1 to form neurotoxic aggregates (Valentine et al. 2005). 
Many reviews have summarized extensive investigations into the role of SOD1 in ALS, 

including in vivo mutant SOD1 models of ALS pathogenesis and their clinical implications 

(Bruijn et al. 2004; Boillee et al. 2006; Mitchell and Borasio 2007; Cozzolino et al. 2008), the 

numerous genetic elements and complex disease etiology associated with sALS and fALS 

(Boillee et al. 2006; Vucic and Kiernan 2009; Bastos et al. 2011), the various ALS rodent 

models used to study the underlying genetics and cause of motor neuron death in ALS (Van 

Den Bosch 2011), and the biophysical properties of mutant SOD1 in relation to possible 

disease mechanisms (Valentine et al. 2005). In this chapter we review recent research 

characterizing the stability, folding and misfolding, and the physical characteristics and 

mechanisms governing aggregation of mutant SOD1 in vitro. We describe in detail studies 

that reflect our own research and interests, but also include references to related work, to 

which we refer the interested reader. We will first review the general principles of protein 

stability and aggregation, which are pertinent to protein conformational diseases in general. 

Following this overview, we examine recent research that has characterized folding and 

aggregation of SOD1 and the relevance of this work to ALS.  

1.2 Characteristics of protein aggregation 
Protein aggregation is a common phenomenon observed in both normal and abnormal 
physiological processes, and has been studied extensively for more than 30 years (Chiti and 
Dobson 2006). While protein association reactions are highly regulated and essential for 
cellular function, unregulated protein association causes a wide range of diseases, such as 
sickle-cell anaemia, serpinopathies, and, in particular, many neurodegenerative diseases 
including prion, Parkinson’s, Alzheimer’s, and Huntington’s diseases (Chiti and Dobson 
2006; Eisenberg et al. 2006; Chiti and Dobson 2009). These protein misfolding diseases are 
characterized by the formation of insoluble proteinacious deposits (aggregates) (Chiti and 
Dobson 2006), and the mechanisms and biological effects of aggregation in different diseases 
are an area of active research. In some cases, toxicity may be caused by large protein 
aggregates; however, smaller oligomeric protein species are generally considered more 
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neurotoxic (Caughey and Lansbury 2003). The harmful nature of these oligomers compared 
to larger protein aggregates may be due to their lower stability, higher degree of solvent 
accessible surface area, and an increased tendency to form non-native associations with 
essential cellular components (Bucciantini et al. 2002; Knowles et al. 2007). For example, 
aggregates of many disease-associated proteins, including mutant SOD1, have been found 
to interact with the ubiquitin-proteasome system (Mouradian 2002; Sakamoto 2002; 
Urushitani et al. 2002; Valentine et al. 2005), folding chaperones (Bruening et al. 1999; 
Wyttenbach et al. 2000; Shinder et al. 2001; Okado-Matsumoto and Fridovich 2002), and the 
outer mitochondrial membrane (Vande Velde et al. 2008). These cellular components play 
central roles in regulating many critical cellular events ranging from cell division to 
apoptosis, and their impairment may represent common mechanisms by which aggregates 
of different proteins can cause cellular dysregulation and cell death (Hol and Scheper 2008; 
Gidalevitz et al. 2010). Many factors are involved in modulating protein aggregation, and 
are surveyed in the following sections. 

1.2.1 Protein folding, stability and aggregation 
Globular protein folding begins on the ribosome, as newly synthesized, unstructured 
polypeptide chains start to make favourable intramolecular contacts (Dobson 2004). As it 
further folds into its mature, native state, a protein may populate multiple conformational or 
intermediate states, and undergo various co- and post-translational modifications (refer to 
Figure 1). The rate determining step of folding involves overcoming the major energetic 
barrier to folding by forming a transition state complex prior to attaining the native state. In 
more complex cases, protein folding can involve more than one energetic barrier (Dobson 
2004). Other proteins are unable to adopt a stable, well folded structure and exist as an 
ensemble of fluctuating, poorly structured conformations (Uversky and Dunker 2010). 
Thermodynamic protein stability is defined as the difference in energy between the 
denatured, unfolded state and the native, folded state. If there is a large separation in energy 
between the unfolded and folded states, the protein has high global thermodynamic 
stability. Stability can also be assessed by the rate of native protein unfolding, which 
determines how long the polypeptide remains in the folded state. This is referred to as 
kinetic stability, defined as the difference in energy between the folded conformation and 
the transition state. The closer these species are in energy, the higher the rate of unfolding 
and the lower the kinetic stability (Figure 1A).  
In general, both thermodynamic and kinetic destabilization of proteins by chemical 

modifications or by mutations favours global protein unfolding and exposure of the 

hydrophobic groups that are normally buried in the protein core. This can promote the 

formation of non-native intermolecular contacts between proteins and the formation of 

aggregates. However, even subtle decreases in global protein stability are often 

accompanied by local destabilization and recent investigations have provided evidence for 

aggregate formation from native-like species (N*, Figure 1) that have undergone much more 

restricted unfolding (Nelson and Eisenberg 2006; Chiti and Dobson 2009). Examples of 

aggregate formation from native-like states include various proteins associated with disease 

such as mutant lysozyme (Chiti and Dobson 2009), ┚2-microglobulin (Chiti and Dobson 

2009), and SOD1 (Hwang et al. 2010). The propensity of a given globular protein to 

aggregate depends on how energetically feasible it is for the protein to access locally, 

partially or fully unfolded aggregation-prone state(s). Protein folding generally occurs in a 
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cooperative fashion with minimal formation of partially folded species and this 

cooperativity generates a sufficiently large energy barrier between the unfolded and folded 

states, which decreases the likelihood of unfolding and aggregation (Dobson 1999; Dobson 

2004; Tartaglia et al. 2008).  

 

 

Fig. 1. Protein stability, misfolding and aggregation.  

In panel A, the difference between thermodynamic and kinetic stability is shown. U, TS‡, 

and N refer to the unfolded, transition and native states of the protein, respectively. Refer to 

the main text for further explanation. In panel B, the effects of native state (N) 

destabilization by mutation on the population of locally unfolded, native-like (N*), partially 

folded intermediate (I) and fully unfolded (U) states is shown. Aggregation may occur from 

N*, I or U, and the morphology of the aggregates formed may depend on the conformation 

of the protein prior to aggregation. Mutations that destabilize N, decrease the energy 

difference between the N and the more unfolded states (N*, I or U), and thereby promote 

aggregation. Note that destabilization of N, does not necessarily imply destabilization of I. 

Mutations that destabilize N, may stabilize or destabilize I, resulting in a large increase or 

decrease, respectively, in the population of I compared to levels observed in the native 

folding pathway. Panel B was adapted from (Chiti and Dobson 2009). 

1.2.2 Factors that modulate aggregation of polypeptides 
In addition to protein stability and structure, many other factors, such as physicochemical 
properties of amino acids within a protein sequence and solution conditions, can affect 
protein aggregation. Hydrophobicity, ┚-sheet propensity, and charge of a polypeptide 
sequence have been shown to modulate the formation of amyloid aggregates (refer to 
section 1.2.3) by unfolded proteins (Chiti et al. 2003). Interestingly, these properties are also 
important for facilitating correct protein folding, suggesting that while similar forces 
contribute to both processes, different key residues are involved in forming the initial 
contacts that drive native protein folding and aggregation (Jahn and Radford 2008). In many 
cases, the overall aggregation propensity of a protein increases if the primary sequence 
contains short stretches of amino acids with properties that favour aggregation, for example, 
low net charge, extensive hydrophobicity, and/or a tendency to form a ┚-sheet over an ┙-
helix (Tartaglia et al. 2008). Interestingly, many fALS-associated SOD1 mutations decrease 
the net charge of the protein, which may promote aggregation and explain why certain 
mutations give rise to a shorter disease duration (Sandelin et al. 2007; Shaw and Valentine 
2007; Bystrom et al. 2010). Sequence hydrophobicity also plays a large role in modulating 
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the aggregation propensity of a protein (Chiti et al. 2003). Several studies have suggested 
that SOD1 mutations promote exposure of hydrophobic regions that can promote 
aggregation (Tiwari et al. 2009; Munch and Bertolotti 2010). Taken together, these studies 
indicate that aggregation is at least partially controlled by the physicochemical properties of 
amino acid residues within a polypeptide sequence (Chiti et al. 2003; Tartaglia et al. 2008). 
In addition, solution conditions can modulate the stability, conformation, and the 

intermolecular interactions of a protein in solution, and can thereby influence the rate of 

protein aggregation and the type of aggregate structure formed (Chi et al. 2003; Mahler et al. 

2009). Importantly, variations in solution conditions can cause the same protein to aggregate 

by fundamentally different mechanisms (Goers et al. 2002; Vetri and Militello 2005; Necula 

et al. 2007). Temperature, pH, macromolecular crowding, agitation, and ionic strength are 

all variables that can influence aggregation (Chi et al. 2003; Munishkina et al. 2004; Mahler et 

al. 2009; Sicorello et al. 2009). A number of studies have used different solution conditions 

(increased temperature, decreased pH, increased ionic strength, sonication or agitation) to 

promote the formation of well-structured, fibrillar amyloid aggregates (see 1.2.3) by various 

forms of SOD1 (Stathopulos et al. 2004; Chattopadhyay et al. 2008; Chattopadhyay and 

Valentine 2009; Oztug Durer et al. 2009). Other studies have demonstrated soluble oligomer 

and small aggregate formation by various forms of SOD1 in quiescent, physiologically 

relevant solution conditions (Vassall, 2011, Hwang, 2010, Banci, 2008). Thus, it is evident 

that multiple factors can greatly influence protein folding and aggregation and these factors 

must be considered when investigating the molecular mechanisms of protein aggregation. 

1.2.3 Amyloid formation 
Protein aggregation is a general term that describes a number of diverse processes that 
culminate in the formation of non-native, multimeric complexes of varied conformations. 
These aggregates can range from small, soluble oligomers, to larger amorphous structures, 
and insoluble, well-structured fibrils (Uversky and Dunker 2010). Amyloid is a common, 
well characterized, type of aggregate formed by proteins associated with many diseases, 
including the neurodegenerative prion, Parkinson’s, Alzheimer’s, and Huntington’s 
diseases (Chiti and Dobson 2006; Chiti and Dobson 2009). Extensive studies of amyloid have 
resulted in significant advances in understanding the underlying molecular basis of protein 
aggregation (Sipe and Cohen 2000; Chiti and Dobson 2006; Eisenberg et al. 2006; Chiti and 
Dobson 2009). Classically defined amyloid is characterized by an unbranched, fibrillar 
aggregate morphology, which exhibits green-gold birefringence upon binding Congo red 
(Sipe and Cohen 2000), a dye used in disease diagnosis, and a cross-┚ x-ray diffraction 
pattern due to the presence of ┚-strands oriented perpendicular to the long axis of the fibre 
(Serpell 2000). These large aggregates can be extremely stable and unaffected by cellular 
clearance machinery (Dobson 1999; Knowles et al. 2007). There is extensive evidence that 
most and perhaps all proteins can form amyloid under suitable, typically destabilizing, 
conditions (Dobson 1999; Munishkina et al. 2004; Stathopulos et al. 2004). Amyloid 
formation can arise from association of unstructured, partially folded, or native-like species, 
and can be prevented by factors that favour native folding (Chiti and Dobson 2009). These 
include such factors as: interactions with molecular chaperones that can stabilize partially 
folded conformations and increase the folding rate; and post-translational modifications or 
ligand binding that can stabilize the native state and prevent unfolding (Dobson 2004; Chiti 
and Dobson 2009). Protein size is also a factor that modulates the propensity of a protein to 
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form amyloid fibrils, as it is less energetically favourable for large proteins to form an 
amyloid core, compared to smaller proteins (Baldwin et al. 2011; Ramshini et al. 2011).  
It should be noted that ALS is not classified by pathologists as an amyloid disease (Kerman 
et al. 2010). Recent studies have reported the formation of SOD1 aggregates in vitro that 
exhibit some features of amyloid (Banci et al. 2008; Furukawa et al. 2008; Oztug Durer et al. 
2009); however, the relevance of such studies to human disease is not known. Typically, 
there is considerable structural heterogeneity in amyloid (Platt and Radford 2009) and in 
other amorphous or ordered aggregate structures formed by many peptides and proteins 
(Fink 1998; Seshadri et al. 2009) (see 1.2.4). Careful analyses using multiple probes are 
required to distinguish between these different aggregate structures. Appropriately 
characterizing mixtures of aggregate structures is a major, ongoing challenge in the study of 
protein aggregation.  

1.2.4 Protein aggregation heterogeneity and disease complexity 
Neurodegenerative disorders characterized by protein misfolding and aggregation, 

including ALS, commonly display phenotypic diversity, such as variation in the age of 

onset, the rate of neuronal dysregulation, and the area of the nervous system affected 

(Armstrong et al. 2000; Goedert et al. 2001; Frost and Diamond 2009; Williamson et al. 2009). 

Although the molecular origins of such phenotypic diversity are complex and may differ 

between diseases, in recent years it has been shown that protein aggregates, including 

amyloid fibrils, exhibit extensive structural heterogeneity both in vivo and in vitro (Berryman 

et al. 2009; Frost and Diamond 2009). Not only do fibrils formed by different amino acid 

sequences adopt conformations that differ in length and twist, but the structure of fibrils 

formed by the same sequence can vary depending on solution conditions (Berryman et al. 

2009). Fibres can vary in the number of amino acids that participate in forming the amyloid 

core, the arrangement of ┚-strands in a parallel or antiparallel conformation within each 

protofilament, and the alignment of ┚-sheets along the protofilament axis (Tycko 2006). The 

structure that a particular protein adopts prior to aggregation influences the structure of the 

aggregate formed and the conformational plasticity of a native protein may play a large role 

in determining the number of structurally different aggregates produced (Jones and 

Surewicz 2005; Natalello et al. 2008). Although aggregate structures formed from the same 

protein can be quite diverse (ie. amorphous versus amyloid structures), in many cases the 

formation of such structures is energetically favourable and therefore switching between 

aggregate conformations can require a large amount of energy. As a result, a particular fibril 

can become trapped in a single conformation (Berryman et al. 2009).  

Structural heterogeneity of protein aggregates has been known for many years for amyloid 
fibrils derived from prion proteins, infectious protein agents that give rise to a number of 
neurodegenerative disorders known as spongiform encephalopathies or prionopathies. In 
these diseases, the infectious agent is a misfolded prion protein (PrPSc, S referring to Scrapie, 
the disease caused by this infectious agent), which once introduced into a host cell can bind 
to the native prion protein (PrPc, c referring to cellular) and induce conversion to the PrPSc 
form, inevitably resulting in the spread of the disease phenotype (Tuite and Serio 2010). 
Because a prion protein can adopt a number of conformations, there is considerable 
heterogeneity in the structure of the amyloid fibrils that are formed from these proteins. 
Prion amyloid fibrils can differ in stability, surface charge and degree of polypeptide 
incorporation into the amyloid core, differences that may play a large role in determining 
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rate of prion replication and the strength of the disease phenotype (Verges et al. 2011). In 
recent years, evidence for conformational diversity, or different strains, of protein 
aggregates has also been described for non-infectious protein conformational disorders such 
as Alzheimer’s, Parkinson’s, Frontal Temporal Dementia, and ALS (Frost and Diamond 
2009; Furukawa et al. 2010). The proteins linked to many of these diseases are natively 
disordered, and so can easily sample different conformations, which may facilitate 
aggregation via multiple pathways. Mutations and/or post-translational modifications can 
greatly influence the population of different conformations of a protein, and thus can largely 
influence the aggregation process. This point may be particularly relevant to ALS toxicity, 
since SOD1, although natively folded, undergoes extensive post-translational modification 
in vivo (Valentine et al. 2005), and is increasingly malleable in its less stable, immature forms 
(refer to section 3). How different fALS-associated mutations modulate the stability of 
different forms of SOD1 may largely determine the ALS phenotype (Vassall et al. 2011). 

2. Structure and function of Cu, Zn-superoxide dismutase (SOD1) 

Before discussing SOD1 folding, misfolding and aggregation, we will give a brief 

description of the tertiary and quaternary structure of SOD1. Human SOD1 is a 32 kDa 

homodimeric metalloenzyme, with each subunit consisting of a 153 amino acid chain that is 

often N-terminally acetylated, contains a highly conserved, intrasubunit disulfide bond, and 

binds one Cu ion and one Zn ion (Figure 2A, C).  

Each monomer folds into a Greek key ┚-barrel, comprised of two, four-stranded antiparallel 

┚-sheets arranged at an angle with respect to one another. The ┚-barrel has a non-

continuous topology such that strands 1 through 3 together with strand 6 form the first ┚-

sheet, while strands 4, 5, 7 and 8 form the second ┚-sheet. The ┚-strands are connected by 

seven loops that differ greatly in length. Loop IV and loop VII are known as the metal 

binding and electrostatic loops, respectively, and play important roles in both stability and 

catalytic function by binding the metals and forming the catalytic site pocket. In addition to 

forming the Zn-binding site, Loop IV contains residues that are important for dimer 

interface and intrasubunit disulfide bond formation, which tethers Loop IV to ┚-strand 8 

(Tainer et al. 1982). Thus, Zn binding, disulfide bond formation and dimerization together 

stabilize the native conformation of this long loop, greatly affecting the overall stability of 

the protein. Loop VII mainly plays a functional role, containing charged residues that shield 

the active site. These charged residues are important for guiding the superoxide anion from 

the surface of the protein into the active site where the redox active Cu ion is bound 

(Valentine et al. 2005). 

SOD1 is abundant and ubiquitously expressed in the cytosol of aerobic organisms (Brown et 

al. 2004). Maturation of the protein involves a series of post-translational modifications, 

which are understood to varying extents. When it is initially synthesized in the reducing 

environment of the cytosol the protein is thought to adopt a marginally stable, folded, 

monomer structure with a reduced disulfide bond and no bound metals. How the protein 

acquires Zn is not known; however, Cu can be acquired by interaction with the copper 

chaperone for SOD1 (CCS) or by a CCS-independent mechanism that may involve 

glutathione, but that is not well understood (Leitch et al. 2009). CCS also catalyzes 

intrasubunit disulfide bond formation in the reducing cellular environment (Leitch et al. 

2009). Although the most abundant form of SOD1 is usually the native, fully mature, 
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dimeric protein (Valentine et al. 2005), there is also evidence for a significant pool of SOD1 

that lacks bound Cu, and is activated in response to oxidative stress (Brown et al. 2004). 

From here we will refer to the various states of the protein in terms of disulfide and 

metallation status, with a focus on the disulfide reduced (2SH), disulfide oxidized (S-S), 

fully metallated (holo) and metal free (apo) states. 

 
 

 
 

Fig. 2. The structural elements of SOD1. 
The crystal structure of fully mature SOD1 is shown in panel A (pdb: 1HL5) (Strange et al. 
2003). The ┚-strands are shown in gray and labelled in white starting from the N-terminus; 
the functional loops IV and VII are shown in red and blue, respectively; the conserved 
disulfide bond (S-S) between Cys57 and Cys146 is indicated by orange spheres, the non-
conserved free Cys (6 and 111) are shown in cyan; and Cu and Zn are indicated by yellow 
and green spheres, respectively. The solution structure of the metal free SOD1 monomer 
variant (pWTmon, refer to the introduction of section 3) is shown in panel B (pdb: 1RK7) 
(Banci et al. 2003). In this structure, only ┚-strands 1-3 and 6 are well defined. The colour 
scheme in panel B is identical to panel A. The primary sequence of the SOD1 monomer is 
shown in panel C. The colours used to depict the secondary structure elements are identical 
to those used in panels A and B. The positions of known fALS-associated mutations are 
listed vertically in red below the naturally occurring amino acid in black. The yellow and 
green spheres indicate the metal binding residues and the secondary structure elements are 
listed above the primary sequence. 
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3. Folding, unfolding and misfolding of SOD1 

A common and powerful approach to understanding the molecular basis for aggregate 
formation is to investigate the biophysical properties of mutant proteins in the native and 
unfolded states, as well as any equilibrium or kinetic intermediates that arise as the 
protein folds or unfolds (Dobson 2004). Equilibrium species refer to the most stable 
conformations that are significantly populated under specific steady-state conditions, 
while kinetic species refer to conformations that are transiently populated as an unfolded 
protein folds into its native conformation. Typically, kinetic folding intermediates have a 
relatively low energy barrier of formation, and therefore can form quickly, but they are 
generally not the most stable conformations. Before protein folding has reached 
equilibrium (ie. during kinetic conditions), it is not the stability of each state that 
determines the relative population of each species along the folding/unfolding pathway, 
but rather how rapidly these states can be accessed on the time scale of protein 
folding/unfolding. Investigating the molecular characteristics that govern the stability of 
different states and enable efficient folding of SOD1 can provide key insights into the 
cause of ALS (Rumfeldt et al. 2006; Stathopulos et al. 2006; Vassall et al. 2006; Rumfeldt et 
al. 2009; Vassall et al. 2011).  
In recent years, systematic analyses of the effects of fALS-associated mutations on the 
stability and folding of various forms of SOD1, including holoS-S, apoS-S and apoSH, 
have been reported. Human SOD1 contains two free cysteine residues at amino acid 
positions 6 and 111 (Figure 2), and these free cysteine residues inhibit reversible unfolding 
of SOD1 in vitro by forming intramolecular and intermolecular non-native disulfide 
bonds, which promote SOD1 aggregation (Lepock et al. 1990; McRee et al. 1990). 
Reversible unfolding is a prerequisite for thermodynamic analysis, and so to overcome 
this limitation pseudo-wild type (pWT) constructs lacking these free cysteines have been 
used extensively for in vitro studies of SOD1. In the most widely used pWT construct, the 
free cysteines are mutated to alanine and serine at positions 6 and 111, respectively 
(Lepock et al. 1990; McRee et al. 1990; Stathopulos et al. 2003; Rumfeldt et al. 2006; 
Stathopulos et al. 2006; Vassall et al. 2006; Kayatekin et al. 2008; Rumfeldt et al. 2009; 
Vassall et al. 2011); however, other mutations at these positions have also been used (most 
notably C6A and C111A) (Lindberg et al. 2004; Nordlund and Oliveberg 2006; Nordlund 
et al. 2009). Not only are these chemically and structurally conservative mutations, a 
serine at position 111 is found in most other mammalian SOD1, and alanine at position 6 
is observed in other non-mammalian organisms (Getzoff et al. 1989). Mutating the free 
cysteines results in highly reversible unfolding of pWT, while having very minimal effects 
on structure, function and stability (Lepock et al. 1990; McRee et al. 1990; Hallewell et al. 
1991; Parge et al. 1992; Vassall et al. 2011). In addition, an engineered monomer construct 
(pWTmon SOD1) has been used to investigate the effects of ALS mutations on the stability 
and folding behaviour of individual SOD1 subunits (Nordlund and Oliveberg 2006; 
Hornberg et al. 2007; Kayatekin et al. 2008; Nordlund et al. 2009; Kayatekin et al. 2010). 
The monomer construct contains two glutamic acid residues in place of Phe50 and Gly51, 
and the presence of these charged residues in the dimer interface prevents SOD1 
dimerization (Bertini et al. 1994; Banci et al. 1998). The use of both pWT and pWTmon 
SOD1 constructs has provided valuable insights into the mechanism of SOD1 folding and 
misfolding, which are described in the following sections, starting with the most 
immature to most mature form of SOD1. 
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SOD1 Form 
tm pWT 

(°C) 
tm WT 

(°C) 

G, 37°C 
pWT 

(kcal mol-1) 

HoloS-S 92.0a (81.7b) 80.1b 33.0a,c 
ApoS-S 59.0a 52.5d 13.2a,c 
Apo2SH 47.6e 46.8e 1.8e,f 

Table 1. Stability parameters obtained from DSC measurements of different forms of wild 
type (WT) and pWT SOD1 
a(Stathopulos et al. 2006) The parameters were obtained using average fitted values 
determined using 0.5 mg mL-1 protein in 20 mM Hepes pH 7.8. 
b(Lepock et al. 1990) tm defined as the temperature of half completion of the DSC profiles 
determined using 2-4 mg mL-1 protein in 100 mM phosphate. 
cG extrapolated to 37°C using methods described in (Stathopulos et al. 2006). Value is in 
units of per mol dimer.  
d(rodriguiz/valentine,2005,PNAS)determined using 2 mg mL-1 protein in 100 mM 
potassium phosphate pH 7.4.  
e(Vassal,2011,PNAS) parameters obtained using average fitted values determined using 0.5 
mg mL-1 protein in 20 mM Hepes pH 7.4, 1mM TCEP. 
fValue is in units of per mol monomer. 

3.1 Equilibrium denaturation of apo2SH SOD1 
In its most immature form, with no bound metals and reduced disulfide bond, apo2SH SOD1 

adopts a marginally stable folded monomer structure. Chemical and thermal equilibrium 

denaturation of apo2SH SOD1 is well described by a 2-state unfolding transition between 

folded and unfolded monomers, denoted as M and U, respectively (M ↔ U) (Kayatekin et al. 

2010; Vassall et al. 2011). At 37˚C and neutral pH, this form of the protein has a low free energy 

of unfolding, 1.8 kcal mol-1 and 1.6 kcal mol-1 for pWT and WT, respectively (Vassall et al. 2011), 

indicating that ~95 % and 93 % of the protein is folded. Furthermore, the corresponding melting 

temperatures are 48 °C and 47 °C, respectively. This stability is relatively low compared to other 

globular proteins, which typically have unfolding free energies of ~5-15 kcal mol-1 (Jackson 

1998) as well as to more mature forms of SOD1 (see sections 3.2-3.4, 3.6, 3.7, Table 1).  

Structural investigations by x-ray crystallography and NMR have shown that without the 

bound metals and disulfide bond, the interface loop (Loop IV) is minimally structured and 

the dimer interface is disrupted (Arnesano et al. 2004; Hornberg et al. 2007). The NMR 

solution structure of monomeric (pWTmon) with no bound metals but intact disulfide bond, 

apoS-S (Banci et al. 2003) provides an interesting comparison (Figure 2B). pWTmon apoS-S 

SOD1 adopts an open ┚-barrel structure due to the flexibility of ┚-strands 4 and 5, and the 

inability of the two ┚-sheets to effectively pack against one another. Furthermore, Loops IV 

and VII are extensively disordered (Banci et al. 2003; Banci et al. 2010). Disulfide bond 

reduction promotes further disorder of the marginally stable Loop IV structure by releasing 

it from its anchor to ┚-strand 8 (Hornberg et al. 2007). Because Loop IV contains residues 

required for Zn binding, disulfide bond formation and dimerization, these modifications are 

thermodynamically coupled. When the disulfide bond is reduced, SOD1 has a much lower 

affinity for Zn (75 nM verses 100 pM for apoS-S SOD1) (Kayatekin et al. 2010), and dimer 

formation is energetically unfavourable (Arnesano et al. 2004).  
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Diverse fALS-associated mutations have markedly different effects on the stability and the 
folding reversibility of apo2SH SOD1 (Kayatekin et al. 2010; Vassall et al. 2011). Wild-type, 
pWT, and pWTmon apo2SH SOD1 are predominantly folded and can undergo reversible 
chemical and thermal denaturation, and hence resist aggregation from partially or fully 
unfolded states (Kayatekin et al. 2010; Vassall et al. 2011). Various fALS-associated 
mutations decrease the unfolding reversibility, which precludes determination of the free 
energy of unfolding, and suggests that these mutations increase the aggregation propensity 
of apo2SH SOD1 (Vassall et al. 2011). Interestingly, an increased tendency to aggregate is 
not observed for all fALS-associated mutants, in particular not for those with compromised 
metal binding (Kayatekin et al. 2010; Vassall et al. 2011). Although the free energy of 
unfolding could not be determined for all mutants studied, owing to the limited stability of 
this form of the protein, the effects of each mutation on stability could be estimated from 
their apparent melting temperatures. This revealed that fALS-associated mutations 
generally have the largest effect on the stability of this most immature form of SOD1 (Table 
1), often decreasing the melting temperature of apoSH to below 37°C, and so markedly 
increasing the fraction of protein that is unfolded at physiological temperature (Furukawa 
and O'Halloran 2005; Kayatekin et al. 2010; Vassall et al. 2011). Of the mutant SOD1s that 
unfold reversibly, most show decreased thermodynamic stability, but some (e.g. those 
involved in metal binding) have little or even a stabilizing effect on stability (Valentine et al. 
2005; Kayatekin et al. 2010; Vassall et al. 2011). These findings imply that in some cases the 
key effects of mutations in ALS may be manifested in more mature forms of SOD1. 

3.2 Kinetic unfolding and refolding of apo2SH 
Relatively little is known about the kinetic folding mechanism of apo2SH SOD1. Initial 

studies of engineered reduced monomer variants have reported 2-state (U ↔ M) folding 

kinetics, which resembles the behaviour of monomeric apoS-S SOD1s (Lindberg et al. 2004; 

Kayatekin et al. 2010) (see section 3.4). A study using a monomeric C6A/C111A/C57A/ 

C146A construct that resembles the apo2SH form, due to its inability to form a disulfide 

bond and dimerize, showed that disulfide bond formation was not required to facilitate the 

early contacts made in the monomer folding pathway (Lindberg et al. 2004). Thus, the 

transition state between unfolded and folded monomers in both the apo2SH and the apoS-S 

monomer folding pathways may be similar. However, the disulfide bond stabilizes the 

folded monomer by decreasing the rate of unfolding, thereby increasing the population of 

folded monomer (Lindberg et al. 2004) (see section 3.4). 

3.3 Equilibrium denaturation of apoS-S SOD1 
Formation of a disulfide bond between Cys57 and Cys146 greatly diminishes the 
conformational freedom of Loop IV (Hornberg et al. 2007), and gives rise to energetically 
favourable dimer formation (Lindberg et al. 2004; Vassall et al. 2006; Ding and Dokholyan 
2008; Kayatekin et al. 2010; Vassall et al. 2011). The observed equilibrium folding mechanism 
of the pWT apoS-S SOD1 dimer depends on the method of inducing denaturation (i.e. 
chemical denaturant versus heat). Spectroscopically-monitored chemical denaturation of 
pWT apoS-S SOD1 can be described by a 3-state mechanism in which dimer dissociation is 
followed by monomer unfolding (N2 ↔ 2M ↔ 2U) (Vassall et al. 2006). Due to mass action, 
however, at increased protein concentrations there is little population of the folded 
monomer and the mechanism appears 2-state (N2 ↔ 2U) (Lindberg et al. 2004; Svensson et 

www.intechopen.com



  
Amyotrophic Lateral Sclerosis 

 

276 

al. 2006; Vassall et al. 2006). Similarly, due to the higher stability of the apoS-S dimer 
compared to the apoS-S monomer and the high protein concentration requirement, thermal 
denaturation by differential scanning calorimetry (DSC) of apoS-S pWT SOD1 appears 2-
state (N2 ↔ 2U) and so does not provide direct information about the energetics of dimer 
dissocation (N2 ↔ 2M ) (Stathopulos et al. 2006; Vassall et al. 2006). Thermal denaturation 
does reveal, however, that the melting temperatures of wild-type and pWT apoS-S SOD1 are 
approximately 53°C (Rodriguez et al. 2005) and 60°C (Stathopulos et al. 2006), respectively; 
therefore, the oxidized form of the protein is predominantly folded at physiological 
temperature. The differences in the reported melting temperatures may be related to 
different buffer conditions used as well as the folding irreversibility of wild-type SOD1 
(Lepock et al. 1992; Chrunyk and Wetzel 1993; Stathopulos et al. 2003). The changes in 
melting temperatures caused by fALS mutations generally range from -15°C to +2°C; thus, 
apoS-S SOD1 mutants are also mainly folded at physiological temperature (Rodriguez et al. 
2005; Vassall et al. 2006; Kayatekin et al. 2010). 
The stability as well as the conformational dynamics of a protein can be assessed using 
hydrogen-deuterium (H/D) exchange measurements, which can identify regions of the 
protein undergoing structural opening (Bai et al. 1995). Interestingly, a number of fALS-
associated mutants, in particular those that compromise metal binding, display a similar 
exchange rate as wild type (Rodriguez et al. 2005). However, others increase the rate of 
structural fluctuations of apoS-S SOD1 (Rodriguez et al. 2005; Prudencio et al. 2009). In 
particular, some mutants show pronounced opening of the ┚-barrel around the edge strands 
at physiological temperatures (Prudencio et al. 2009). Thus, both equilibrium denaturation 
and H/D exchange experiments reveal that fALS-associated mutations have diverse effects 
on the stability of apoS-S SOD1, ranging from destabilizing to stabilizing. 
Highly reversible chemical denaturation behaviour has enabled accurate measurements of 

the energetics of both dimer dissociation and monomer unfolding for pWT and mutant 

apoS-S. Determining how mutations affect the energy, and thus the population, of each 

species formed along the (un)folding pathway, provides insight into the mechanisms of 

apoS-S aggregation. Chemical denaturation experiments have revealed that for structurally 

and chemically diverse mutations, fALS-associated mutations generally decrease the 

stability of apoS-S SOD1 by destabilizing both the monomer and the dimer interface, with a 

larger affect on monomer stability compared to the dimer stability (Vassall et al. 2006). 

Remarkably, the effects of the mutations appear to propagate extensively through the apoS-

S form of the protein, inevitably destabilizing the dimer interface (Vassall, K.A. et al. 

unpublished data) (Khare et al. 2006; Bystrom et al. 2010). Structurally, the apoS-S SOD1 

dimer interface is small compared to the amount of solvent exposed surface area (Tainer et 

al. 1982; Parge et al. 1992); consequently, the dimer interface may be more easily perturbed 

in the apoS-S state. Moreover, metal loss induces asymmetry in the dynamics of the apoS-S 

SOD1 monomers, indicative of a structure that is less compact than the holoS-S dimer 

(Strange et al. 2007). The conformation of both the ┚-barrel core, in particular ┚-strand 5, and 

the functional Loops IV and VII are less rigid in the absence of bound metal (Banci et al. 

2009; Teilum et al. 2009). It has been proposed that metal binding is important for shielding 

the charged residues in Loops IV and VII, which contain too few hydrophobic residues to 

facilitate close packing with the ┚-barrel core in the absence of bound metal (Nordlund et al. 

2009). Similarly, metal binding may protect against conformational changes in SOD1 that 

increase hydrophobic exposure (Tiwari et al. 2009).  
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Therefore, it seems reasonable that many fALS-associated mutations have a large effect on 
the global stability of apoS-S SOD1. Structural perturbations in one region of the apoS-S 
SOD1 structure are likely to result in structural perturbations in another region. However, it 
is clear that fALS-associated mutations have differing effects on the global stability of apoS-S 
SOD1. In particular, both the apoS-S and apo2SH forms of the metal-binding mutants 
appear to possess similar stability compared to the wild-type protein (Rodriguez et al. 2005; 
Vassall et al. 2011). In fact, some fALS-associated mutations increase the stability of apo2SH 
and apoS-S forms compared to pWT SOD1 (Vassall et al. unpublished data) (Vassall et al. 
2011). For example, the mutation H46R increases the stability of both apo2SH and apoS-S 
SOD1 and the reason for this increase in stability may be due to the introduction of a 
positively charged side chain into the metal binding pocket of the protein, effectively 
mimicking the stabilizing effects of the charged metals. 

3.4 Kinetic unfolding and refolding of apoS-S SOD1 
The kinetic unfolding mechanism of pWT apoS-S SOD1 can be described by the same 3-state 

mechanism previously outlined for equilibrium denaturation of the wild-type and pWT 

apoS-S form, where dimer dissociation is followed by the unfolding of two monomers 

(Figure 3) (Svensson et al. 2006). The overall observed rate of unfolding depends on four 

microscopic rate constants: the rate constant for folding (kf), unfolding (ku), monomer 

association (ka), and dimer dissociation (kd) (Figure 3B); however, under highly denaturing 

conditions (ie. high denaturant concentration), the marginally stable monomer unfolds 

rapidly and the rate of the entire unfolding pathway is determined by the rate of dimer 

dissociation (kd) (Lindberg et al. 2004; Svensson et al. 2006). In contrast, the overall rate of 

the refolding pathway of wild-type and pWT apoS-S is limited only by the rate of monomer 

folding. Therefore, once the monomer has folded the rate of monomer association is 

extremely rapid (Lindberg et al. 2004; Svensson et al. 2006). The transition state for monomer 

association is similar to the native dimer with respect to the amount of buried surface area 

(Svensson et al. 2006). This is similar to the transition state between unfolded and folded 

monomer, which represents the major energetic barrier of the unfolding/refolding pathway. 

It has been observed that ~70% of the structure that is buried in the monomer intermediate 

is also buried in the transition state between the unfolded and folded monomer, suggesting 

that considerable structural rearrangements must occur before that transition state can form 

(Svensson et al. 2006). Interestingly, under both equilibrium and kinetic conditions, the 

population of monomer intermediate remains below 0.5% at physiologically relevant 

protein concentrations, suggesting that the folding pathway of SOD1 has evolved to limit 

accumulation of marginally stable monomer intermediates (Svensson et al. 2006). 

Equilibrium denaturation analyses of fALS-associated mutant apoS-S SOD1 demonstrate a 

decreased stability of both the monomer intermediate and the dimer interface, increasing 

the population of monomeric intermediate as well as the unfolded monomer (Lindberg et al. 

2004; Vassall et al. 2006), which enhances the accessibility of partially folded, high energy 

states that may give rise to aggregation.  

Kinetic unfolding/refolding studies of the monomeric apoS-S SOD1 (pWTmon) and the 
apo2SH forms of SOD1 can be compared to gain an understanding of how disulfide bond 
formation modulates the SOD1 folding pathway. Both the pWT apo2SH and the pWTmon 
apoS-S forms of SOD1 fold via a 2-state mechanism, whereby the unfolded monomer adopts 
a folded conformation in one step (U ↔ M) (Lindberg et al. 2004; Nordlund and Oliveberg 
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2006; Kayatekin et al. 2010). Owing to the similar folding/unfolding mechanism of apo2SH 
and pWTmon apoS-S, disulfide bond formation is probably not requisite in the early 
monomer folding events. Consistent with this notion, the topology of the ┚-barrel brings 
Cys57 and Cys146 close in space, promoting disulfide bond formation. Although reduction 
of the disulfide bond does not prevent formation of the necessary contacts that facilitate 
monomer folding, the maintenance of the disulfide bond modulates the stability of the 
SOD1 monomer by decreasing the rate of unfolding and to a smaller extent increasing the 
rate of folding (Lindberg et al. 2004; Kayatekin et al. 2010).  
Removal of Loops IV and VII has little effect on the structure and dynamics of the core 

apoS-S ┚-barrel (Nordlund et al. 2009). Additionally, the folding behaviour of pWTmon 

apoS-S SOD1 in the absence of these functional loops remains 2-state; however, this SOD1 

construct has a 10-fold increase in the rate of folding, while the rate of unfolding is less 

affected (Nordlund et al. 2009). Removing the Zn-binding site has little effect on the rate of 

folding, but decreases the rate of unfolding, stabilizing the folded apoS-S SOD1 monomer 

(Nordlund et al. 2009). These results suggest that while the ┚-barrel can fold independently 

of Loop IV and VII, these critical functional loops endow the protein with a less than 

optimal folding mechanism and may increase the aggregation propensity of the immature 

forms of the protein.  

The overall rate of both apo2SH and apoS-S SOD1 folding appears to be dictated largely by 

the structural determinants of the monomer folding nucleus. Furthermore, regions 

extraneous to this folding nucleus are the more labile regions of the protein that unfold first, 

and thus have been suggested to play a role in SOD1 aggregation. It has been shown that ┚-

strands 1-3 of the first ┚-sheet must make contact with ┚-strands 4 and 7 in the second ┚-

sheet to overcome the monomer folding energy barrier. The other strands (┚5, ┚6 and ┚8) 

remain disordered in the transition state between unfolded and folded monomers 

(Nordlund and Oliveberg 2006). By attaching Loop IV to ┚-strand 8 and forming the dimer 

interface the disulfide bond may prevent the structural fluctuations that lead to the 

unravelling of the more dynamic strands of the ┚-barrel.  

3.5 Are the metal free forms of SOD1 the common denominator in fALS toxicity? 
Taken together, equilibrium and kinetic folding studies of apo2SH and apoS-S SOD1 
suggest that a number of factors may contribute to an increased tendency to aggregate. 
Many fALS-associated mutations increase the fraction of partially folded monomers, while a 
few mutations remain wild-type-like in their folding behaviour and aggregation propensity. 
Because the ┚-strands display differences in conformational freedom, the location of each 
fALS-associated mutation and the physicochemical properties of the amino acid introduced 
seem to greatly affect SOD1 stability and accessibility to partially folded species that may 
bridge the gap between productive folding and aggregation pathways. These differences 
may also change the structural properties of the aggregates formed. In recent years, many 
studies have focused on characterizing a common underlying cause of toxicity in all SOD1-
associated fALS cases. Thus a great deal of attention has been directed towards studying the 
biophysical properties of the more immature forms of SOD1, since fALS-associated 
mutations have a greater effect on the stability of these forms compared to the fully mature 
holoS-S form (Lindberg et al. 2004; Furukawa and O'Halloran 2005; Furukawa and 
O'Halloran 2006; Khare et al. 2006; Nordlund and Oliveberg 2006; Svensson et al. 2006; 
Smith et al. 2007; Furukawa et al. 2008; Nordlund et al. 2009; Oztug Durer et al. 2009; Tiwari 
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et al. 2009; Kayatekin et al. 2010; Vassall et al. 2011). Despite this recent focus, the form of 
SOD1 that is most relevant to ALS pathogenesis remains unknown. It is clear that some 
fALS-associated mutations minimally affect the stability and folding kinetics of apo2SH and 
apoS-S SOD1, which suggests that it is necessary to look beyond the immature forms of SOD 
to uncover the cause of ALS.  

3.6 Equilibrium denaturation of holoS-S SOD1 
Similar to the equilibrium denaturation pathway of apoS-S SOD1, the observed equilibrium 

denaturation mechanism of holoS-S SOD1 depends on the mode of denaturation and 

protein concentration. For pWT SOD1, holoS-S equilibrium denaturation curves fit a 

reversible 3-state model in which the folded holo native dimer transitions to the unfolded 

monomer through a folded, metallated, monomeric intermediate (Rumfeldt et al. 2006). The 

presence of bound metal stabilizes the monomer intermediate far more than the dimer 

interface. Thus, the dimer is only slightly stronger in holoS-S compared to apoS-S, while the 

free energy of monomer folding is much higher for holoS-S SOD1 compared to apoS-S SOD1 

(Rumfeldt et al. 2006; Vassall et al. 2006). At high protein concentrations, the population of 

the monomer intermediate is significantly reduced and the equilibrium denaturation 

mechanism approaches 2-state (Rumfeldt et al. 2006). Similarly, in thermal denaturation by 

DSC, the monomeric intermediate is not significantly populated and the unfolding appears 

2-state (Stathopulos et al. 2006). In both chemical and thermal denaturation of holoS-S 

SOD1, metals remain bound throughout the transition, although binding is weakened in the 

monomer intermediate and unfolded state compared to the dimer (Rumfeldt et al. 2006; 

Stathopulos et al. 2006; Kayatekin et al. 2008). Equilibrium denaturation of holoS-S SOD1 

reveals that metal binding significantly increases the free energy of unfolding (Table 1). 

Consistent with this, the melting temperature of holoS-S SOD1 is ~30°C higher than apoS-S 

SOD1. Thus, it is likely that the stabilizing effects of metallation as well as disulfide bond 

formation are intrinsic inhibitors of SOD1 aggregation. Mutations therefore may exert 

toxicity to the cell by inhibiting SOD1 maturation and/or by promoting metal loss, dimer 

dissociation and/or disulfide reduction (Tiwari and Hayward 2003; Lindberg et al. 2004; 

Furukawa and O'Halloran 2005; Furukawa and O'Halloran 2006; Banci et al. 2007; Hornberg 

et al. 2007; Ding and Dokholyan 2008; Furukawa et al. 2008; Tiwari et al. 2009). 

Comparable to apoS-S SOD1, the equilibrium denaturation mechanism of fALS-associated 
mutant holoS-S SOD1 remains the same as pWT. In a number of cases mutations have been 
shown to decrease the stability of holoS-S, by decreasing the stability of the monomer, with 
less effect on dimerization (Rumfeldt et al. 2006; Stathopulos et al. 2006; Vassall et al. 2006). 
This decreased stability of the holoS-S monomer can often be attributed to weakened metal 
binding (Hayward et al. 2002), as metal dissociation results in an increased population of the 
less stable apo state. Thus, in most cases mutations appear to have a more local effect on the 
stability of holoS-S SOD1 compared to apoS-S SOD1 (Rumfeldt et al. 2006; Vassall et al. 
2006); yet, structural perturbations due to mutation may propagate further if metal binding 
is compromised since loop dynamics and interface stability are greatly affected by the 
presence of metals (Valentine et al. 2005; Smith et al. 2007; Museth et al. 2009). The 
overwhelming majority of fALS-associated mutations destabilize the holo state, but because 
of its extremely high thermodynamic stability the absolute increase in the amount of 
unfolded species will still be very small, and thus unlikely to affect aggregation. What seems 
more likely to impact disease is increased local structural fluctuations that can arise from 
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metal loss and/or dimer dissociation, exposing regions of the SOD1 structure that can make 
favourable contacts with other SOD1 molecules, and thereby give rise to aggregation from 
native-like states (Elam et al. 2003; Hwang et al. 2010). 

3.7 Kinetic unfolding and refolding of holoS-S SOD1 
Analyzing the kinetics of holoS-S SOD1 folding and unfolding provides a method for 

further characterizing the marginally stable intermediates that form along the folding 

pathway as these are not always detected at equilibrium where only the most stable 

species are measurably populated. These kinetic intermediates nevertheless may play 

significant roles in holoS-S SOD1 aggregation. Both pWT and wild-type holoS-S 

kinetically unfold slowly in vitro via a monomeric intermediate species which has 

somewhat weaker metal binding affinity relative to the native dimer (Rumfeldt et al. 2006; 

Kayatekin et al. 2008; Mulligan et al. 2008; Rumfeldt et al. 2009). The overall rate of holoS-

S unfolding is dependent on the microscopic rate constants that define each equilibrium 

transition (Figure 3A). 

 

 

Fig. 3. The kinetic unfolding mechanism of holoS-S and apoS-S SOD1. 

In panel A, the kinetic unfolding mechanism of holoS-S SOD1 is shown. The overall rate of 

unfolding is dependent on the microscopic rate constants kd, ka, ku, kf, and protein and 

metal concentration, as well as the equilibrium constant for Zn dissociation from the 

monomeric intermediate. For a more detailed description refer to (Rumfeldt et al. 2009). In 

panel B, the simpler kinetic unfolding mechanism of apoS-S SOD1 is shown. The overall rate 

of unfolding depends only on the microscopic rate constants kd, ka, ku, kf and protein 

concentration. 

The observed unfolding kinetics therefore depend on the rate of dimer dissociation, which 

occurs rapidly, and the rate of monomer unfolding, a much slower process (Lynch et al. 

2004; Rumfeldt et al. 2009). Under high protein concentration conditions, or in the presence 

of excess metals, pWT holoS-S SOD1 remains fully metallated as it unfolds, with metals 

remaining bound to the unfolded state, while at low protein concentrations, Zn can 

dissociate from both the monomeric intermediate and unfolded monomer (Rumfeldt et al. 

2009). Similar results were obtained in kinetic unfolding studies of wild-type holoS-S SOD1 

in the presence of a metal chelator, where dimer dissociation and Zn loss were found to 

occur simultaneously, followed by a conformational change in the ┚-barrel that precedes 

and facilitates Cu loss (Mulligan et al. 2008).  

The differences in Cu and Zn binding as holoS-S SOD1 unfolds can be rationalized by 
considering the structural differences in the Cu and Zn binding sites, as follows. While 
SOD1 binds both metals with extremely high affinity, Cu binds with higher affinity than Zn, 
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with dissociation constants (Kd) estimated as 10-18 M and 10-14 M (Crow et al. 1997), 
respectively. In principal, structural differences between the transition state resembling the 
free energy barrier between the folded and unfolded monomer, compared to the structure of 
the folded monomer, determine the regions of the protein that, if changed, will have the 
largest effect on the rate of unfolding. If a particular region is structured in both the 
monomer and the transition state, then alterations in the stability of that region, either by 
metal binding or mutation, will affect the free energy of the monomer and its unfolding 
transition state in a similar way. As a result, the difference in free energy between the folded 
monomer and transition state and therefore the rate of monomer unfolding will be 
unaffected. Alternatively, if a particular region of the protein is structured in the folded 
monomer, but not in the transition state, then changes in the stability of that region will 
affect the energetics of the folded monomer and transition state differently. In this case the 
rate of unfolding will be affected. The Cu binding site is formed by residues in ┚-strands 4 
and 7, which are thought to be structured in the transition state, while the Zn binding site is 
formed mainly by residues in Loop IV and ┚-strand 5, which are thought to be disordered in 
the transition state (Nordlund and Oliveberg 2006). Therefore, the rate of unfolding should 
be affected more by Zn binding than Cu binding and indeed there is some experimental 
evidence that suggests this to be the case (Rumfeldt et al. 2009). 
It has been shown that fALS-associated mutant holoS-S SOD1s increase the unfolding rates 
of holoS-S SOD1 (Rumfeldt et al. 2009; Ip et al. 2010). Increased unfolding rates and 
accessibility of either on or off-folding pathway intermediates may increase the accessibility 
of transient protein species that can initiate aggregation (Dobson 2003; Wang et al. 2008). 
Furthermore, it has been proposed that fALS-associated mutations, even those far from the 
metal binding sites, promote increased levels of Cu-deficient intermediates along the holoS-
S SOD1 unfolding pathway (Ip et al. 2010). Cu-deficient intermediates are lower in stability 
and therefore may have a higher tendency to aggregate. 
The in vitro refolding mechanism of holoS-S SOD1 is more complex than apoS-S SOD1 due 

to the presence of metal (Figure 3). While the apoS-S form folds via a simple 3-state (2-step) 

mechanism, with a rate constant that is limited by the rate of monomer folding (see section 

3.4), holoS-S refolding occurs through parallel pathways that differ with respect to the 

fraction of metal bound to the unfolded and transition states (Rumfeldt et al. 2009). 

However, in the presence of excess Cu and Zn and at high protein concentrations, 

conditions that favour metal binding to the unfolded state, the refolding kinetics can be 

described as a simple 2-step process, as each unfolded SOD1 monomer is saturated with 

metal. Zn coordination in the native binding site stabilizes the monomer intermediate and 

folded dimer more than the unfolded monomer, accelerating refolding of apoS-S 100 fold 

(Kayatekin et al. 2008). However, Zn can also bind to non-native sites on the protein 

(Kayatekin et al. 2008; Nordlund et al. 2009). The Cu-coordinating residues are capable of 

binding Zn with micromolar affinity in the denatured state after mutation of the native Zn 

coordinating residues (Nordlund et al. 2009). This non-native coordination of Zn augments 

the stability of apoS-S SOD1 by increasing the rate of folding and decreasing the rate of 

unfolding, but forces SOD1 to adopt a non-native conformation. Thus misligation of Zn can 

cause misfolding and decrease the efficiency of folding (Nordlund et al. 2009). However, 

with intact Cu and Zn binding sites, Zn may be coordinated by the Cu-binding site first, 

helping to overcome the main energy barrier of folding, before moving to the Zn-binding 

site (Nordlund et al. 2009). Other studies have demonstrated that Zn-binding is required to 
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pre-organize the Cu-binding site (Banci et al. 2003). Together these studies show that metal 

binding significantly modulates the efficiency of the SOD1 folding pathway by stabilizing 

both the monomer and dimer and decreasing the rate of unfolding. However, non-native 

metal binding may force the protein to be kinetically trapped in a partially folded, 

aggregation prone conformation that is more stable than the unfolded state (Nordlund et al. 

2009). Together these results show that the kinetic unfolding and refolding mechanism of 

SOD1 is highly dependent on metal binding.  

3.8 fALS mutations and modifications have complex effects on the folding and 
stability of SOD1 
It is evident that fALS-associated mutants have different and complex effects on the stability 

of SOD1, and these effects depend on the form of SOD1 being studied. For example, 

mutations that have a large effect on holoS-S SOD1 stability, such as metal binding mutants, 

tend to have a much smaller effect on the more immature forms of the protein (Valentine et 

al. 2005). Also, the effects of mutations are more pronounced, but to varying extents for 

different mutations, with decreasing stability in immature forms of SOD1 (Vassall et al. 

2006; Vassall et al. 2011). It is important to understand how both the equilibrium and kinetic 

folding pathways of all forms of SOD1 are altered by fALS-associated mutations to untangle 

the complexity of SOD1 aggregation. Certain mutations may have a large effect on the 

thermodynamic stability of the protein, through weakened metal binding or by decreasing 

the stability of the dimer interface, while having a smaller effect on the kinetic stability of 

SOD1. Other mutations may only subtly alter the thermodynamic stability of the native 

state, exerting their effects by altering the kinetic stability of SOD1 by decreasing the rate of 

folding, or by increasing the rate of unfolding (Rumfeldt et al. 2006). These effects can 

increase the equilibrium and/or transient population of folded or unfolded monomeric 

species that are prone to aggregate (see section 4).  

In addition, fALS mutations may alter the susceptibility of SOD1 to post-translational 

modifications which will tend to decrease protein stability. These include not only enhanced 

metal loss and disulfide reduction (resulting in higher population of immature species), but 

also other modifications, in particular ones that are enhanced under oxidizing cellular 

conditions, which may occur late in disease. Examples include cysteine oxidation (Gruzman 

et al. 2007; Karch et al. 2009; Bosco et al. 2010), glutathionylation (Proctor et al. 2011), 

tryptophan oxidation (Elam et al. 2003), and glycation (Meiering 2008). While there is 

relatively little quantitative data on the effects of these modifications on stability, there is 

evidence that they can be destabilizing. Such modifications may play different roles at 

different disease stages; for example, oxidative modifications may become more 

pronounced as the disease progresses and contribute to rapid disease progression by 

enhancing formation of toxic aggregates (Karch et al. 2009). 

4. SOD1 aggregation 

Numerous experimental studies have characterized the aggregation of multiple forms of 
SOD1. These are described below, focussing mainly on in vitro studies, and their 
implications for disease. It is important to note, however, that it is not yet known what 
forms of SOD1 are involved in human disease: neither the disulfide bond status nor metal 
content of SOD1 in aggregates is known. Evidence supports the population of multiple 
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forms of SOD1 in vivo (see section 2). Collectively, experimental findings provide support 
for contributions from many forms of SOD1 to toxic aggregation in ALS.  

4.1 Aggregation of Apo2SH SOD1 
4.1.1 Evidence of Apo2SH SOD1 aggregation 
Aggregation of the marginally stable apoSH form of SOD1 has been suggested in a 

number of studies to be particularly important in ALS pathogenesis. Studies from 

multiple groups have reported that wild-type, pWT and fALS-associated mutant apoSH 

SOD1 are all predisposed to aggregate (Lindberg et al. 2004; Furukawa and O'Halloran 

2005; Hornberg et al. 2007; Chattopadhyay et al. 2008; Furukawa et al. 2008; Oztug Durer 

et al. 2009; Vassall et al. 2011). Additional support for the biological significance of 

apoSH aggregation is that fALS-associated mutants expressed in insect cells tend to be 

more metal deficient and disulfide reduced compared to wild type; this finding was 

proposed to be a consequence of enhanced opening of the mutant SOD1 structures, 

exposing the disulfide bond to the reducing environment of the cytosol (Tiwari and 

Hayward 2003). Furthermore, murine models of fALS have revealed the presence of 

aggregated disulfide reduced SOD1 species (Jonsson et al. 2006; Zetterstrom et al. 2007). 

Based on what is known about the relationship between protein stability and 

aggregation propensity (see section 1.2.1), and on the relatively low stability and the 

expanded, fluctuating structure of apoSH SOD1 (see section 3.1), it appears that 

aggregation of this form of SOD1 could be significant under cellular conditions 

(Furukawa et al. 2008). Consistent with this idea, in vitro agitation of apo2SH SOD1 

results in amyloid fibril formation (Chattopadhyay et al. 2008; Oztug Durer et al. 2009; 

Furukawa et al. 2010). Although the agitation phenomenon is poorly understood at a 

molecular level it may favour amyloid fibril formation over pathways to other 

morphologies. Agitation may enhance aggregation in general by promoting the 

formation of aggregation-prone species at air-solution or solid-solution interfaces, as 

well as increase the rate of aggregation by distributing aggregation nuclei more 

efficiently and causing preformed aggregates to break and create new nucleation sites 

(Sicorello et al. 2009). Again, it should be noted that since agitation can promote 

aggregation of many proteins (Rousseau et al. 2008; Mahler et al. 2009; Sicorello et al. 

2009), and ALS is not classified as an amyloid disease (Kerman et al. 2010), it is not yet 

clear how agitation-induced aggregation in vitro is related to aggregation in disease. 

4.1.2 Mechanisms of Apo2SH SOD1 aggregation 
Intriguing structural variations in apoSH amyloid and non-amyloid aggregates have been 
reported and may be related to the different disease durations for different SOD1 mutants. 
Structural diversity has been observed in the amyloid fibrils formed by different SOD1 
mutants (Furukawa et al. 2010). In addition, in vitro aggregation experiments without 
agitation showed that different apo2SH SOD1 mutants may form different sized, small (~40 
nm - 1000 nm), soluble, non-amyloid aggregates (Vassall et al. 2011). These soluble species 
may be particularly relevant to fALS toxicity, as oligomeric protein aggregates have been 
implicated as key neurotoxic species in many other neurodegenerative diseases (Caughey 
and Lansbury 2003; Soto and Estrada 2008). The variations in structural characteristics for 
apo2SH SOD1s aggregates may indicate that different mutants favour distinct aggregation 
pathways, depending on the aggregation-prone conformations that mutants may adopt. 
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Another factor in the heterogeneity of aggregate structures formed may be that apo2SH is 
appreciably unfolded at physiological temperatures, and therefore may sample multiple 
aggregation-prone conformations. 

4.2 Aggregation of ApoS-S SOD1  
4.2.1 Evidence of ApoS-S SOD1 aggregation 
Aggregation of the apo S-S form of SOD1 has been studied extensively in vitro. This is 
likely related to the reasonable ease of preparation and aggregation of this quite stable 
form of the protein (Table 1) (see section 3.3 and 3.4). A role for apoS-S in disease is 
supported by various in vitro and in vivo evidence for aggregation of metal-deficient 
SOD1 as well as evidence that mutations can promote loss of bound metals (Valentine et 
al. 2005; Molnar et al. 2009; Oztug Durer et al. 2009; Hwang et al. 2010; Lelie et al. 2011). 
Both wild-type and fALS mutant apoS-S SOD1s are predominantly folded, but mutations 
can significantly increase the population of folded and unfolded monomeric species 
(Lindberg et al. 2004; Svensson et al. 2006; Vassall et al. 2006), and increase structural 
fluctuations (Ding and Dokholyan 2008; Teilum et al. 2009), both of which can promote 
aggregation. The formation of the disulfide bond decreases the propensity of apoS-S to 
aggregate compared to apoSH (see section 4.1), while the absence of bound metals in 
apoS-S SOD1 increases its aggregation propensity compared to holoS-S (see also section 
4.3).  
Several studies have described the in vitro formation of amyloid-like soluble or fibrillar 

aggregates for wild-type and fALS-associated apoS-S SOD1 mutants (Furukawa and 

O'Halloran 2005; Banci et al. 2007; Banci et al. 2008; Oztug Durer et al. 2009). Aggregation of 

mutant SOD1 in these studies was often accelerated by agitation, resulting in the formation 

of aberrant disulfide bonds between Cys6 and Cys111 (Figure 2) and removal of the free 

thiol groups by mutation (Banci et al. 2007; Cozzolino et al. 2008) generally diminished 

aggregation. The role of aberrant disulfide bond formation has been investigated extensively 

using fALS mutant SOD1 mice models of ALS where it appears that such bonds are 

observed mainly late in disease (Cozzolino et al. 2008; Karch and Borchelt 2008). These 

results highlight an important question: does the role of SOD1 differ at different stages of 

disease? Considerable evidence suggests that the answer is yes; in particular, soluble 

oligomers may be particularly important early in disease, whereas larger aggregates become 

prominent after the onset of disease symptoms (Boillee et al. 2006; Cozzolino et al. 2008; 

Turner and Talbot 2008). Many questions on the roles of different aggregate species and 

their targets remain unanswered.  

A number of studies have reported aggregation of apoS-S SOD1 in the absence of aberrant 

disulfide bond formation. Formation of such amyloid-like aggregates by pWT and mutant 

SOD1 can be induced by agitation at neutral pH; however, in these studies the observed 

ease of aggregation was not correlated with disease duration (Chattopadhyay et al. 2008; 

Furukawa et al. 2008; Oztug Durer et al. 2009; Furukawa et al. 2010). Also, soluble, 

reversible aggregates induced by heat were detected by DSC (Vassall et al. unpublished 

data) (Stathopulos et al. 2006; Vassall et al. 2006). In these studies, mutations in a pWT 

background generally increased aggregate formation. Furthermore, decreased stability of 

fALS-associated mutant apoS-S SOD1 was correlated with increased formation of 

amorphous aggregates that mature into fibril structures that resemble those found in fALS 

patients (Stathopulos et al. 2003).  
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4.2.2 Mechanisms of ApoS-S Aggregation 
A number of studies have focussed on possible molecular mechanisms of apoS-S SOD1 
aggregation, often based on various structural and dynamic data. In the absence of bound 
metal, there is still extensive disorder in the functional Loops IV and VII, and this disorder 
may promote exposure of the ┚-barrel core and deprotection of the ┚-barrel edge strands (┚-
strands 5 and 6) (Strange et al. 2007). With these edge strands exposed, H-bonding ligands 
within the strands are free to interact with the edge strands of other SOD1 molecules and 
these aberrant contacts can lead to fibril formation (Elam et al. 2003; Nordlund and 
Oliveberg 2006). As an evolutionary strategy to avoid this fibrillation mechanism, the edge 
strands of ┚-proteins often contain charged “gatekeeper” residues, advantageously 
positioned to disfavour ┚-sheet extension (Otzen et al. 2000). Protection of the ┚-barrel edge 
strands in SOD1 is facilitated both by charged residues in ┚-strands 5 and 6 and by Loops IV 
and VII, which block the edge of the ┚-barrel in the holoS-S form (Nordlund and Oliveberg 
2006). The other edge of the ┚-barrel is buried within the dimer interface. Therefore, the 
dynamics of Loop IV and VII that cause exposure of either ┚-strands 5 and 6, or the dimer 
interface, may lead to fibrillation. Solution NMR experiments of wild-type apoS-S SOD1 
suggest that disorder in Loops IV and VII allows stretches of amino acids within these 
functional loops to form additional ┚-strands, thereby initiating oligomerization (Banci et al. 
2010). 
In addition, ┚-strands 4 and 5 are connected by Loop IV and ┚-strands 7 and 8 by Loop 

VII, and the disorder in these long loops appears to propagate to the flanking ┚-strands. 

Consequently, the ┚-sheet formed by strands 4, 5, 7 and 8 is less defined in apoS-S SOD1 

compared to the ┚-sheet formed by strands 1-3 and 6 (Banci et al. 2003; Banci et al. 2010). 

Thus, metal loss and increased mobility of Loops IV and VII may result in exposure of 

hydrophobic residues in the ┚-barrel core (Tiwari et al. 2009). In addition, ┚-strands 1-3 

have been proposed to be a nucleation site for aggregation of apoS-S as they form a 

continuous patch of hydrophobic residues (Nordlund and Oliveberg 2006). These 3 

strands form early in the monomer folding pathway (Lindberg et al. 2004; Nordlund and 

Oliveberg 2006) and therefore may become exposed by partial unfolding of the apoS-S 

protein. 

The destabilizing effects of fALS-associated mutations appear to propagate significantly in 

apoS-S SOD1, in particular generally weakening the dimer interface (see section 3.3) (Vassall 

et al. unpublished data) (Khare et al. 2006; Bystrom et al. 2010). Destabilization of the apoS-S 

dimer interface can increase the levels of marginally stable, apoS-S monomers. Furthermore, 

it was demonstrated recently that breathing motions of the wild-type apoS-S monomer 

result in transient formation of a higher energy species with weakened packing and a 

partially exposed hydrophobic core (Teilum et al. 2009). fALS-mutations induce further 

perturbations in this higher energy state that open up the structure of the mutant apoS-S 

SOD1 monomer more compared to wild type (Teilum et al. 2009) and so may further 

promote aggregation.  

The increased structural dynamics observed for metal-free SOD1 described above, 

suggests that apoS-S may be predisposed to aggregate compared to the holoS-S state. 

Several studies have demonstrated that apoS-S SOD1 can aggregate by a variety of 

different mechanisms that give rise to different aggregate morphologies, including both 

disulphide cross-linked and non cross-linked species, amyloid-like fibrils and non-

amyloid amorphous aggregates. 
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4.3 Aggregation of SOD1 from the holoS-S state 
4.3.1 Evidence of aggregation from the holoS-S state 
While the highly stable, native holoS-S form of SOD1 (see section 3.5) generally appears to 

be much less susceptible to aggregation than other forms of the protein (Stathopulos et al. 

2003; Valentine et al. 2005), there is evidence that a number of SOD1 mutants can give rise to 

aggregation from the holoS-S form. Hwang et al. found that prolonged incubation of both 

pWT and fALS-associated holoS-S SOD1 mutants at physiological temperature and pH 

results in changes in metal binding and/or dimerization, diminished specific dismutase 

activity, and the nucleated formation of low levels of amorphous aggregates (Hwang et al. 

2010). Furthermore, these experiments show that, although the aggregated SOD1 

demonstrated some metal loss, there was still a significant amount of metal bound, 

indicating that complete metal loss was not essential for aggregation. Although both pWT 

and mutant holoS-S SOD1 were observed to aggregate, in general the holoS-S SOD1 mutants 

lose specific activity quicker, and aggregate more rapidly, and to a greater extent, than pWT. 

Importantly, the aggregates formed from holoS-S SOD1 in this study exhibited similar 

structural, dye-binding, and immunological characteristics as the aggregates found in fALS 

patients (Hwang et al. 2010). In contrast, other studies have reported that SOD1 does not 

aggregate from the holoS-S form (Chattopadhyay et al. 2008), or requires extremely 

destabilizing conditions with agitation to promote fibrilization (Oztug Durer et al. 2009). 

The differences between these findings may be related to the different experimental 

conditions for studying SOD1 aggregation, such as length of incubation, frequency of 

sampling, and methods for monitoring aggregation.  

4.3.2 Mechanisms of holoS-S aggregation 
Immature forms of SOD1 can form amyloid fibrils far more readily than holoS-S (Banci et al. 

2007; Furukawa et al. 2008; Oztug Durer et al. 2009), and this difference in aggregation 

tendency is likely related to the very high stability and rigidity of holoS-S compared to the 

less mature forms (Stathopulos et al. 2003; Rumfeldt et al. 2006; Stathopulos et al. 2006; 

Svensson et al. 2006; Vassall et al. 2006; Furukawa et al. 2008; Kayatekin et al. 2008; 

Kayatekin et al. 2010; Vassall et al. 2011). Highly disordered, predominantly unfolded, 

proteins tend to favour the formation of amyloid (as may be the case for apo forms of 

SOD1), whereas more structured proteins favour formation of amorphous aggregates (as for 

holoS-S) (Munishkina et al. 2004). Measurements of global thermodynamic stability have 

shown that, owing to the high stability of the holo form, destabilizing mutations will in 

general cause very small increases in the population of unfolded protein (Rumfeldt et al. 

2006; Stathopulos et al. 2006); these increases are unlikely to account for SOD1 aggregation 

in ALS. Aggregation may alternatively arise from native-like, locally unfolded states (Chiti 

and Dobson 2009; Hwang et al. 2010) (Figure 1B) which appear to be enhanced in holoS-S 

SOD1 by some fALS-associated mutations (Shipp et al. 2003; Hough et al. 2004; Banci et al. 

2005; Museth et al. 2009). Ultimately, it is likely that some sort of relatively rare/slow 

structural change is required to bring about aggregation from holoS-S SOD1 (Hwang et al. 

2010), in contrast to the apo2SH form, which aggregates readily for some fALS-associated 

mutant SOD1s (Vassall et al. 2011).  

SOD1 aggregation arising from the holoS-S form appears to occur through a nucleation-
dependent mechanism that is characterized by a lag phase (i.e. slow nucleation) followed by 
fast aggregate growth (Hwang et al. 2010). The lag phase corresponds to the time required 
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for holoS-S SOD1 to arrange into an aggregation-prone state and/or form the necessary 
contacts required for aggregation. It is likely that dimer dissociation and/or metal loss from 
SOD1 occur during this lag phase and may be important triggers of aggregation (Hwang et 
al. 2010). Furthermore, various fALS-associated mutations appear to decrease the length of 
the lag phase, perhaps due to weakened metal binding and/or a weakened dimer interface, 
(Crow et al. 1997; Khare et al. 2004; Tiwari et al. 2009).  
These results suggest that fully mature SOD1 is not devoid of the ability to aggregate, as it 
could give rise to native-like aggregation-prone species via loss of metal, dimer dissociation, 
or local structural openings, promoted by mutation. Such aggregation may be highly 
relevant to fALS toxicity, since holo S-S is generally the most highly abundant form of SOD1 
in vivo (Valentine et al. 2005). 
 

 

Fig. 4. Many forms of SOD1 may be relevant to ALS toxicity.  
SOD1 can exist in many forms in vivo, which is illustrated in Figure 4. Each monomer is 
depicted as a grey sphere that is smaller when metals are bound and/or the disulfide is 
formed. The presence of Cu and Zn is shown by orange and green spheres, respectively; and 
S-S and 2SH indicate disulfide oxidized and reduced species, respectively. The difference in 
SOD1 conformation prior to aggregation may largely influence the morphology of the 
aggregates formed. Images and schematic representation of possible aggregate 
morphologies are shown in the centre on the right. Panels A, C and D are Atomic Force 
Microscopy images of SOD1 aggregates formed in vitro (Broom et al, unpublished data) 
(Hwang et al. 2010) and panel B is an electron microscopy image obtain from of SOD1 
aggregates formed in vitro (Stathopulos et al. 2003).  

www.intechopen.com



  
Amyotrophic Lateral Sclerosis 

 

288 

5. Conclusion  

Numerous studies have revealed that the effects of fALS-associated mutations on the 

folding, unfolding and aggregation of different forms of SOD1 are highly complex. 
Mutations can alter both equilibrium stability, in terms of the energetics of dimer 

dissociation, monomer intermediate stability, and metal binding, and kinetic stability, in 
terms of the rates of interconversion between various SOD1 species (Section 3). As a 

consequence, the populations of various aggregation prone species may be increased for 
different mutations, and this may give rise to different aggregate structures.  
There have been a number of attempts to identify the relationships between the effects of the 
mutations and ALS disease characteristics. In particular, disease duration, which is 
characteristic for patients carrying a given SOD1 mutation, has been used as a measure of 
the toxicity of each fALS-associated SOD1 mutation. Early work focused on the loss of 
superoxide dismutase activity, and increased oxidative stress as the common underlying 
cause of disease (Valentine et al. 2005). Subsequently, the focus shifted to the toxic gain of 
function for mutant SOD1, both aberrant enzymatic SOD1 activity, or increased SOD1 
aggregation, the latter being the predominant focus of this review. Owing to the high 
stability and lower aggregation propensity of the holoS-S form, many studies have focused 
on characterizing the stability and aggregation mechanisms of the more immature, metal 
deficient SOD1 forms. However, recent work suggests that disease duration does not 
correlate strongly with the stability of the apoS-S form of mutant SOD1 (Bystrom et al. 2010). 
This observation was rationalized by considering the role of factors beyond destabilization 
in modulating aggregation, such as changes in protein net charge and hydrogen bonding. 
An interesting study by Wang et al. reported that predicted aggregation propensity, based 
on the physicochemical properties of the polypeptide sequence (Chiti et al. 2003) combined 
with the stability of mutant apoS-S SOD1 in a summative score and weighted towards 
mutants with more patient data, correlated fairly well with fALS disease durations (Wang et 
al. 2008). On the other hand, recent work by Vassall et al. demonstrated that observed 
aggregation of the apo2SH form is not correlated with disease duration (Vassall et al. 2011). 
Collectively, these studies demonstrate that multiple factors including protein stability, 
dynamics, and biophysical characteristics are likely to play a role in modulating SOD1 
aggregation, and that fALS phenotypic characteristics are not likely to be fully explained by 
the aggregation behaviour of any one form of SOD1.  
Aggregation studies on holoS-S, apoS-S, and apo2SH SOD1 mutants have identified 
multiple mechanisms and aggregate morphologies (Section 4 and Figure 4). HoloS-S SOD1, 
widely thought believed to be much less susceptible to aggregation, has nevertheless been 
shown to form amorphous aggregates in a nucleation-dependent manner where the lag 
phase may involve metal loss or monomerization (Hwang et al. 2010). ApoS-S SOD1 may 
form amyloid- or non-amyloid-like aggregates with or without disulphide cross-linking 
depending on the solution conditions, and apo2SH SOD1 has been found to adopt the most 
diverse range of aggregate morphologies, including soluble aggregates under 
physiologically relevant conditions which may be particularly neurotoxic (Caughey and 
Lansbury 2003). Considering the influence of SOD1 mutations on the stability, unfolding 
and folding patterns of all forms of SOD, together with the diverse mechanisms of 
aggregation, different mutations may be influencing the protein in variable ways, resulting 
in a wide spectrum of effects. This diversity is likely to play a significant role in the variable 
disease courses for fALS patients with SOD1 mutations. Ultimately, the role of SOD1 in ALS 
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may be similar to the roles of other globular, oligomeric proteins in misfolding diseases such 
as: transthyretin in familial amyloidotic polyneuropathy and senile systemic amyloidosis, 
lysozyme in hereditary non-neuropathic systemic amyloidosis, immunoglobulin light chain 
in monoclonal protein systemic amyloidosis, prion protein in Kreutzfeld Jakob, and serpins 
in serpinopathies (Ohnishi and Takano 2004; Harrison et al. 2007). In these diseases 
mutations are generally destabilizing, but the extent of destabilization of monomer versus 
subunit interfaces varies widely. The role of SOD1 in disease may be further complicated by 
the potential aberrant enzymatic activity of misfolded and/or aggregated species which 
could cause oxidative damage. In addition, it is worth considering the different roles of 
various types of SOD1 aggregate structures, or contributions of aberrant activity and the 
effects of these on other cellular components, at different stages throughout the disease 
course of ALS. For these reasons, it is important that future studies continue to consider the 
possible roles of multiple forms of SOD1 mutants in modulating the formation of different 
aggregate structures (Figure 4). A combination of further in vitro and in vivo studies of 
folding and aggregation will be critical for untangling the role of toxic aggregation in the 
syndrome of ALS.  
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