41 research outputs found
Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure
Coronary artery disease ( CAD) is the major cause of morbidity and mortality in the world. Identification of novel genetic determinants may provide new opportunities for developing innovative strategies to predict, prevent and treat CAD. Therefore, we meta-analyzed independent genetic variants passing P <x 10(-5) in CARDIoGRAMplusC4D with novel data made available by UK Biobank. Of the 161 genetic variants studied, 71 reached genome wide significance (p <5 x 10(-8)) including 15 novel loci. These novel loci include multiple genes that are involved in angiogenesis (TGFB1, ITGB5, CDH13 and RHOA) and 2 independent variants in the TGFB1 locus. We also identified SGEF as a candidate gene in one of the novel CAD loci. SGEF was previously suggested as a therapeutic target based on mouse studies. The genetic risk score of CAD predicted recurrent CAD events and cardiovascular mortality. We also identified significant genetic correlations between CAD and other cardiovascular conditions, including heart failure and atrial fibrillation. In conclusion, we substantially increased the number of loci convincingly associated with CAD and provide additional biological and clinical insights
Relationship of Arterial Stiffness Index and Pulse Pressure With Cardiovascular Disease and Mortality
Background-Vascular aging results in stiffer arteries and may have a role in the development of cardiovascular disease (CVD). Arterial stiffness index (ASI), measured by finger photoplethysmography, and pulse pressure (PP) are 2 independent vascular aging indices. We investigated whether ASI or PP predict new-onset CVD and mortality in a large community-based population. Methods and Results-We studied 169613 UK Biobank participants (mean age 56.8years; 45.8% males) who underwent ASI measurement and blood pressure measurement for PP calculation. MeanSD ASI was 9.30 +/- 3.1m/s and mean +/- SD PP was 50.98 +/- 13.2mmHg. During a median disease follow-up of 2.8years (interquartile range 1.4-4.0), 18190 participants developed CVD, of which 1587 myocardial infarction (MI), 4326 coronary heart disease, 1192 heart failure, and 1319 stroke. During a median mortality follow-up of 6.1years (interquartile range 5.8-6.3), 3678 participants died, of which 1180 of CVD. Higher ASI was associated with increased risk of overall CVD (unadjusted hazard ratio 1.27; 95% confidence interval [CI], 1.25-1.28), myocardial infarction (1.38; 95% CI, 1.32-1.44), coronary heart disease (1.31; 95% CI, 1.27-1.34), and heart failure (1.31; 95% CI 1.24-1.37). ASI also predicted mortality (all-cause, CVD, other). Higher PP was associated with overall CVD (1.57; 95% CI, 1.55-1.59), myocardial infarction (1.48; 95% CI, 1.42-1.54), coronary heart disease (1.47; 95% CI, 1.43-1.50), heart failure (1.47; 95% CI, 1.40-1.55), and CVD mortality (1.47; 95% CI, 1.40-1.55). PP improved risk reclassification of CVD in a non-laboratory-based Framingham Risk Score by 5.4%, ASI by 2.3%. Conclusions-ASI and PP are independent predictors of CVD and mortality outcomes. Although both improved risk prediction for new-onset disease, PP appears to have a larger clinical value than ASI
Effect of Metformin Treatment on Lipoprotein Subfractions in Non-Diabetic Patients with Acute Myocardial Infarction:A Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction (GIPS-III) Trial
OBJECTIVE:Metformin affects low density lipoprotein (LDL) and high density (HDL) subfractions in the context of impaired glucose tolerance, but its effects in the setting of acute myocardial infarction (MI) are unknown. We determined whether metformin administration affects lipoprotein subfractions 4 months after ST-segment elevation MI (STEMI). Second, we assessed associations of lipoprotein subfractions with left ventricular ejection fraction (LVEF) and infarct size 4 months after STEMI. METHODS:371 participants without known diabetes participating in the GIPS-III trial, a placebo controlled, double-blind randomized trial studying the effect of metformin (500 mg bid) during 4 months after primary percutaneous coronary intervention for STEMI were included of whom 317 completed follow-up (clinicaltrial.gov Identifier: NCT01217307). Lipoprotein subfractions were measured using nuclear magnetic resonance spectroscopy at presentation, 24 hours and 4 months after STEMI. (Apo)lipoprotein measures were obtained during acute STEMI and 4 months post-STEMI. LVEF and infarct size were measured by cardiac magnetic resonance imaging. RESULTS:Metformin treatment slightly decreased LDL cholesterol levels (adjusted P = 0.01), whereas apoB remained unchanged. Large LDL particles and LDL size were also decreased after metformin treatment (adjusted P<0.001). After adjustment for covariates, increased small HDL particles at 24 hours after STEMI predicted higher LVEF (P = 0.005). In addition, increased medium-sized VLDL particles at the same time point predicted a smaller infarct size (P<0.001). CONCLUSION:LDL cholesterol and large LDL particles were decreased during 4 months treatment with metformin started early after MI. Higher small HDL and medium VLDL particle concentrations are associated with favorable LVEF and infarct size
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.</p
Discovery of novel heart rate-associated loci using the Exome Chip
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.
Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104â452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, Nâ=â134â251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.
We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.
Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies
Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
Abstract: Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimerâs disease â outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P <1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P <5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.Peer reviewe