75 research outputs found

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Application of Broad-Spectrum, Sequence-Based Pathogen Identification in an Urban Population

    Get PDF
    A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose. This newly developed RPM v.1 was used to analyze 424 well-characterized nasal wash specimens from patients presenting with febrile respiratory illness in the Washington, D. C. metropolitan region. For each specimen, the RPM v.1 results were compared against composite reference assay (viral and bacterial culture and, where appropriate, RT-PCR/PCR) results. Across this panel, the RPM assay showed ≥98% overall agreement for all the organisms detected compared with reference methods. Additionally, the RPM v.1 results provide sequence information which allowed phylogenetic classification of circulating influenza A viruses in ∼250 clinical specimens, and allowed monitoring the genetic variation as well as antigenic variability prediction. Multiple pathogens (2–4) were detected in 58 specimens (13.7%) with notably increased abundances of respiratory colonizers (esp. S. pneumoniae) during viral infection. This first-ever comparison of a broad-spectrum viral and bacterial identification technology of this type against a large battery of conventional “gold standard” assays confirms the utility of the approach for both medical surveillance and investigations of complex etiologies of illness caused by respiratory co-infections

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    A research agenda to support the development and implementation of genomics-based clinical informatics tools and resources.

    Get PDF
    OBJECTIVE: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled Developing a Clinical Genomic Informatics Research Agenda . The meeting\u27s goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. MATERIALS AND METHODS: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting\u27s goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. RESULTS: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. DISCUSSION: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them

    Funerary practices or food delicatessen? Human remains with anthropic marks from the Western Mediterranean Mesolithic

    Get PDF
    The identification of unarticulated human remains with anthropic marks in archaeological contexts normally involves solving two issues: a general one associated with the analysis and description of the anthropic manipulation marks, and another with regard to the interpretation of their purpose. In this paper we present new evidence of anthropophagic behaviour amongst hunter-gatherer groups of the Mediterranean Mesolithic. A total of 30 human remains with anthropic manipulation marks have been found in the Mesolithic layers of Coves de Santa Maira (Castell de Castells, Alicante, Spain), dating from ca. 10.2-9 cal ky BP. We describe the different marks identified on both human and faunal remains at the site (lithic, tooth, percussion and fire marks on bone cortex). As well as describing these marks, and considering that both human and faunal remains at the site present similar depositional and taphonomic features, this paper also contextualizes them within the archaeological context and subsistence patterns described for Mesolithic groups in the region. We cannot entirely rule out the possibility that these practices may be the result of periodic food stress suffered by the human populations. These anthropophagic events at the site coincide with a cultural change at the regional Epipalaeolithic-Mesolithic transition

    Hoxa9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of Hoxa9-dependent leukemia

    Get PDF
    Deregulated expression of Hox genes such as HoxA9 is associated with development of myeloproliferative disorders and leukemia and indicates a poor prognosis. To investigate the molecular mechanisms by which HoxA9 promotes immortalization of hematopoietic cells, we generated growth factor dependent myeloid cells in which HoxA9 expression is regulated by administration of 4-hydroxy-tamoxifen. Maintenance of HoxA9 overexpression is required for continued cell survival and proliferation, even in the presence of growth factors. We show for the first time that maintenance of Bcl-2 expression is critical for HoxA9-dependent immortalization and influences the latency of HoxA9-dependent leukemia. Hematopoietic cells lacking Bcl-2 were not immortalized by HoxA9 in vitro. Furthermore, deletion of Bcl-2 delayed the onset and reduced the severity of HoxA9/Meis1 and MLL-AF9 leukemias. This is the first description of a molecular link between HoxA9 and the regulation of Bcl-2 family members in acute myeloid leukemia.Gabriela Brumatti, Marika Salmanidis, Chung H Kok, Rebecca A Bilardi, Jarrod J Sandow, Natasha Silke, Kylie Mason, Jolanda Visser, Anissa M Jabbour, Stefan P Glaser, Toru Okamoto, Philippe Bouillet, Richard J D'Andrea, and Paul G Eker

    Hoxa9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of Hoxa9-dependent leukemia

    Get PDF
    Deregulated expression of Hox genes such as HoxA9 is associated with development of myeloproliferative disorders and leukemia and indicates a poor prognosis. To investigate the molecular mechanisms by which HoxA9 promotes immortalization of hematopoietic cells, we generated growth factor dependent myeloid cells in which HoxA9 expression is regulated by administration of 4-hydroxy-tamoxifen. Maintenance of HoxA9 overexpression is required for continued cell survival and proliferation, even in the presence of growth factors. We show for the first time that maintenance of Bcl-2 expression is critical for HoxA9-dependent immortalization and influences the latency of HoxA9-dependent leukemia. Hematopoietic cells lacking Bcl-2 were not immortalized by HoxA9 in vitro. Furthermore, deletion of Bcl-2 delayed the onset and reduced the severity of HoxA9/Meis1 and MLL-AF9 leukemias. This is the first description of a molecular link between HoxA9 and the regulation of Bcl-2 family members in acute myeloid leukemia.Gabriela Brumatti, Marika Salmanidis, Chung H Kok, Rebecca A Bilardi, Jarrod J Sandow, Natasha Silke, Kylie Mason, Jolanda Visser, Anissa M Jabbour, Stefan P Glaser, Toru Okamoto, Philippe Bouillet, Richard J D'Andrea, and Paul G Eker
    corecore