875 research outputs found
Real-time digital signal processor implementation of self-calibrating pulse-shape discriminator for high purity germanium
Pulse-shape analysis of the ionization signals from germanium gamma-ray
spectrometers is a method for obtaining information that can characterize an
event beyond just the total energy deposited in the crystal. However, as
typically employed, this method is data-intensive requiring the digitization,
transfer, and recording of electronic signals from the spectrometer. A hardware
realization of a real-time digital signal processor for implementing a
parametric pulse shape is presented. Specifically, a previously developed
method for distinguishing between single-site and multi-site gamma-ray
interactions is demonstrated in an on-line digital signal processor, compared
with the original off-line pulse-shape analysis routine, and shown to have no
significant difference. Reduction of the amount of the recorded information per
event is shown to translate into higher duty-cycle data acquisition rates while
retaining the benefits of additional event characterization from pulse-shape
analysis.Comment: Accepted by NIM
Recommended from our members
Solutions to Defect-Related Problems in Implanted Silicon by Controlled Injection of Vacancies by High-Energy Ion Irradiation
Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Pre-amorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectroscopy was used to profile the dopant distributions
Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements. Application to the Casimir force in the 20-100 nm range
Using a template-stripping method, macroscopic gold surfaces with
root-mean-square (rms) roughness less than 0.4 nm have been prepared, making
them useful for studies of surface interactions in the nanometer range. The
utility of such substrates is demonstrated by measurements of the Casimir force
at surface separations between 20 and 100 nm, resulting in good agreement with
theory. The significance and quantification of this agreement is addressed, as
well as some methodological aspects regarding the measurement of the Casimir
force with high accuracy.Comment: 7 figure
Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms
We propose a technique, using interferometry of Bose-Einstein condensed
alkali atoms, for the detection of sub-micron-range forces. It may extend
present searches at 1 micron by 6 to 9 orders of magnitude, deep into the
theoretically interesting regime of 1000 times gravity. We give several
examples of both four-dimensional particles (moduli), as well as
higher-dimensional particles -- vectors and scalars in a large bulk-- that
could mediate forces accessible by this technique.Comment: 32 pages, 5 figures, RevTeX4, expanded discussion of interactions,
references added, to appear in PR
Pilot Observational Study of Patient Reported Outcome Measures for Long COVID Patients in Virtual Integrative Medical Group Visits
Background: Long COVID is a common, debilitating post-infectious illness for which effective management is unknown. Integrative Medical Group Visits (IMGV) are effective interventions for chronic conditions and could benefit Long COVID patients. More information is needed regarding existing patient reported outcome measures (PROMs) to evaluate efficacy of IMGV for Long COVID. Objective: This study assessed the feasibility of specific PROMS to evaluate IMGVs for Long COVID. Findings will inform future efficacy trials. Methods: The Perceived Stress Scale (PSS-10), General Anxiety Disorder two-question tool (GAD-2), Fibromyalgia Symptom Severity scale (SSS), and Measure Yourself Medical Outcome Profile (MYMOP®) were collected pre- and post-group by teleconferencing platform or telephone and compared using paired t-tests. Patients were recruited from a Long COVID specialty clinic where they participated in 2-hour - 8 weekly IMGV sessions online. Results: Twenty-seven participants enrolled and completed pre-group surveys. Fourteen participants were reachable by phone post-group and completed all pre and post PROMs (78.6% female, 71.4% non-Hispanic White, mean age 49). MYMOP® primary symptomatology was fatigue, shortness of breath and “brain fog”. Symptoms decreased in interference when compared to pre-group levels (mean difference −1.3 [95% CI-2.2, −.5]). PSS scores decreased (−3.4 [95% CI -5.8, −1.1]), and GAD-2 mean difference was −1.43 (95% CI –3.12,.26). There were no changes in SSS scores of fatigue (−.21 [95% CI -.68,0.25]), waking unrefreshed (.00 [95%CI -.32, −.32]), or trouble thinking (−.21 [95% CI -.78,0.35]). Conclusion: All PROMs were feasible to administer via teleconferencing platform or telephone. The PSS, GAD-2 and MYMOP® are promising PROMs to track Long COVID symptomatology among IMGV participants. The SSS, while feasible to administer, did not change compared to baseline. Larger, controlled studies are needed to determine the efficacy of virtual IMGVs to address the needs of this large and growing population
Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study
Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019.
Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019.
Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases.publishedVersio
Climate adaptation and agriculture: Solutions to successful national adaptation plans
The purpose of this brief is to share insights on agriculture and NAPs with national-level decision makers in developing countries and Least Developed Countries (LDCs), multilateral agencies, UNFCCC negotiators and donors. This brief explores how countries are overcoming the biggest challenges in developing NAPs, outlines examples of successful cross-sector adaptation planning, explores influence and leverage necessary for successful NAP processes, and offers specific recommendations
FORUM: Toward a Phenomenology of Interviews
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43940/1/11422_2005_Article_9001.pd
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
- …