37 research outputs found

    Semidefinite Characterization and Computation of Real Radical Ideals

    Full text link
    For an ideal IR[x]I\subseteq\mathbb{R}[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I))I(V_\mathbb{R}(I)) is presented, provided it is zero-dimensional (even if II is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute all (finitely many) points of the real variety VR(I)V_\mathbb{R}(I) as well as a set of generators of the real radical ideal. The latter is obtained in the form of a border or Gr\"obner basis. The algorithm is based on moment relaxations and, in contrast to other existing methods, it exploits the real algebraic nature of the problem right from the beginning and avoids the computation of complex components.Comment: 41 page

    The HEV Ventilator

    Full text link
    HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hardware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PC-A/C(Pressure Assist Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger, delivering a global performance which will be applicable to ventilator needs beyond theCOVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to PNA

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI study

    Get PDF
    The distributions of species are not only determined by where they can survive – they must also be able to reproduce. Although immigrant inviability is a well-established concept, the fact that immigrants also need to be able to effectively reproduce in foreign environments has not been fully appreciated in the study of adaptive divergence and speciation. Fertilization and reproduction are sensitive life-history stages that could be detrimentally affected for immigrants in non-native habitats. We propose that “immigrant reproductive dysfunction” is a hitherto overlooked aspect of reproductive isolation caused by natural selection on immigrants. This idea is supported by results from experiments on an externally fertilizing fish (sand goby, Pomatoschistus minutus). Growth and condition of adults were not affected by non-native salinity whereas males spawning as immigrants had lower sperm motility and hatching success than residents. We interpret these results as evidence for local adaptation or acclimation of sperm, and possibly also components of paternal care. The resulting loss in fitness, which we call “immigrant reproductive dysfunction,” has the potential to reduce gene flow between populations with locally adapted reproduction, and it may play a role in species distributions and speciation.</p

    Variation in structure and process of care in traumatic brain injury: Provider profiles of European Neurotrauma Centers participating in the CENTER-TBI study

    Get PDF
    Introduction: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Methods: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions.Results: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. Conclusion: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches.</p

    Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI

    Get PDF
    Background: No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP) management strategies, resulting in practice variation. The aim of this study was to examine variation in monitoring and treatment policies for intracranial hypertension in patients with TBI. Methods: A 29-item survey on ICP monitoring and treatment was developed based on literature and expert opinion, and pilot-tested in 16 centers. The questionnaire was sent to 68 neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research (CENTER-TBI) study. Results: The survey was completed by 66 centers (97% response rate). Centers were mainly academic hospitals (n = 60, 91%) and designated level I trauma centers (n = 44, 67%). The Brain Trauma Foundation guidelines were used in 49 (74%) centers. Approximately ninety percent of the participants (n = 58) indicated placing an ICP monitor in patients with severe TBI and computed tomography abnormalities. There was no consensus on other indications or on peri-insertion precautions. We found wide variation in the use of first- and second-tier treatments for elevated ICP. Approximately half of the centers were classified as having a relatively aggressive approach to ICP monitoring and treatment (n = 32, 48%), whereas the others were considered more conservative (n = 34, 52%). Conclusions: Substantial variation was found regarding monitoring and treatment policies in patients with traumatic brain injury and intracranial hypertension. The results of this survey indicate a lack of consensus between European neurotrauma centers and provide an opportunity and necessity for comparative effectiveness research

    A hybrid approach to modelling, control and state estimation of mechanical systems with backlash

    No full text
    Control of mechanical systems with backlash is a topic well studied by many control practitioners. This interest has been motivated by the fact that backlash in mechanical systems can cause severe performance degradation and lead to instability of the control system. Furthermore, high impact-forces in backlash-systems can lead to a lower durability of the components and to strokes and peaks in the output. In this paper a mechanical benchmark system is presented to provide facilities for testing the identification and control of systems with backlash. For controller design a hybrid model of the system was derived and used in a model predictive control (MPC) scheme. Observer-based state-estimation was used to recover unmeasured states, particularly the backlash angle. Explicit solutions of a tracking controller were computed to control the mechanical benchmark system in real-time. Simulation as well as experimental results are presented to show the applicability of this hybrid control approach

    Global and regional assessment of sustained inflation pressure-volume curves in patients with acute respiratory distress syndrome

    No full text
    Objective. Static or quasi-static pressure-volume (P-V) curves can be used to determine the lung mechanical properties of patients suffering from acute respiratory distress syndrome (ARDS). According to the traditional interpretation, lung recruitment occurs mainly below the lower point of maximum curvature (LPMC) of the inflation P-V curve. Although some studies have questioned this assumption, setting of positive end-expiratory pressure 2 cmH2O above the LPMC was part of a 'lung-protective' ventilation strategy successfully applied in several clinical trials. The aim of our study was to quantify the amount of unrecruited lung at different clinically relevant points of the P-V curve.

    C9orf72 proteins regulate autophagy and undergo autophagosomal or proteasomal degradation in a cell type-dependent manner

    No full text
    Abstract Dysfunctional autophagy or ubiquitin-proteasome system (UPS) are suggested to underlie abnormal protein aggregation in neurodegenerative diseases. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)-associated C9orf72 is implicated in autophagy, but whether it activates or inhibits autophagy is partially controversial. Here, we utilized knockdown or overexpression of C9orf72 in mouse N2a neuroblastoma cells or cultured neurons to elucidate the potential role of C9orf72 proteins in autophagy and UPS. Induction of autophagy in C9orf72 knockdown N2a cells led to decreased LC3BI to LC3BII conversion, p62 degradation, and formation of LC3-containing autophagosomes, suggesting compromised autophagy. Proteasomal activity was slightly decreased. No changes in autophagy nor proteasomal activity in C9orf72-overexpressing N2a cells were observed. However, in these cells, autophagy induction by serum starvation or rapamycin led to significantly decreased C9orf72 levels. The decreased levels of C9orf72 in serum-starved N2a cells were restored by the proteasomal inhibitor lactacystin, but not by the autophagy inhibitor bafilomycin A1 (BafA1) treatment. These data suggest that C9orf72 undergoes proteasomal degradation in N2a cells during autophagy. Lactacystin significantly elevated C9orf72 levels in N2a cells and neurons, further suggesting UPS-mediated regulation. In rapamycin and BafA1-treated neurons, C9orf72 levels were significantly increased. Altogether, these findings corroborate the previously suggested regulatory role for C9orf72 in autophagy and suggest cell type-dependent regulation of C9orf72 levels via UPS and/or autophagy
    corecore