2,724 research outputs found

    Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences

    Get PDF
    During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway

    Religious Identity, Religious Attendance, and Parental Control

    Full text link
    Using a national sample of adolescents aged 10–18 years and their parents (N = 5,117), this article examines whether parental religious identity and religious participation are associated with the ways in which parents control their children. We hypothesize that both religious orthodoxy and weekly religious attendance are related to heightened levels of three elements of parental control: monitoring activities, normative regulations, and network closure. Results indicate that an orthodox religious identity for Catholic and Protestant parents and higher levels of religious attendance for parents as a whole are associated with increases in monitoring activities and normative regulations of American adolescents

    Loss of Biological Diversity: A Global Crisis Requiring International Solutions: A Report to the National Science Board

    Get PDF
    Executive Summary Biological diversity refers to the variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequency. For biological diversity, these items are organized at many levels, ranging from complete ecosystems to the chemical structures that are the molecular basis of heredity. Thus, the term encompasses different ecosystems, species, genes, and their relative abundance (OTA, 1987). There is an ongoing, unprecedented loss of the variety as well as absolute numbers of organisms-from the smallest microorganism to the largest and most spectacular of mammals. Loss of tropical moist forests, which contain over half the total species of organisms, has been well documented by scientists and is now widely reported in the media. Many other ecosystems are also threatened; as human populations and their support systems expand, natural ecosystems at all latitudes are altered or converted. At its meeting on October 15, 1987, the National Science Board concluded that the world\u27s decreasing biological diversity is a critical scientific issue requiring immediate attention. The National Science Board\u27s Committee on International Science was asked to study the scientific and international aspects of the decline of biological diversity and to recommend a course of action. This report describes what the National Science Foundation (NSF) can do to influence the U.S. science and education base, articulates where international scientific cooperation is needed, and suggests roles for other agencies and organizations (both national and international) which have scientific, educational, and management responsibilities. The current disappearance of biota has several causes: the destruction or degradation of entire ecosystems; the accelerating loss of individual species from communities or ecosystems as a result of human disturb;mce; and the loss of genetically distinct parts of populations due to human-induced selective pressures. Although not all parts of the planet are equally affected, the problem is global, and human activities are the primary cause. The loss of biological diversity is important because human existence depends on the biological resources of 1 the earth. Human prosperity is based very largely on the ability to utilize biological diversity: to take advantage of the properties of plants, animals, fungi, and microorganisms for food, clothing, medicine, and shelter. Scientific knowledge about the earth\u27s biological diversity has huge gaps. This lack of information hampers society\u27s ability either to estimate the magnitude of the problem or to prevent further losses. It is impossible to identify all the biological resources at risk, since there is no complete inventory of all the life forms on earth. Approximately 1.4 million species have been given scientific names, but estimates of actual numbers range from 5 million to 80 million species. Although knowledge of some taxa is extensive, the vast majority of groups are largely unknown. The current wave of extinction is destroying both known biotic resources and those still undiscovered. As is proving to be the case with most environmental problems, neither the loss of biological diversity nor its solution is the exclusive province of any one nation. International cooperation is necessary to develop both scientific knowledge and successful mitigation and management strategies. The root causes of the problem include sociological and economic processes which operate on an global scale; a thorough understanding will require investigation and elucidation of both biological and non-biological components. There are several reasons for increasing National Science Foundation (NSF) involvement in biodiversity studies: the economic and social importance of biodiversity (and the risk of opportunity lost due to accelerating extinction); the contributions such leadership can make toward to conservation of biological diversity; the important role of such studies in the international growth of science, especially in tropical countries; the potential impact of such studies on the future course of biology as a whole; and enhancing public awareness of the issues. NSF should assume a scientific leadership position with respect to agencies in the U.S. and throughout the world. By insisting on the central importance of biodiversity, the NSF could encourage collaborative support for the actions recommended below. 1. The Committee believes that the role of the NSF is clear-NSF should, as a matter of National Science Board Policy, provide leadership to undertake the inventory of the world\u27s biodiversity. 2. The scientific basis for conservation biology, restoration ecology, and environmental management must be strengthened. 3. Educational and public awareness programs related to biodiversity need increased support. 4. The economic and social aspects of the biodiversity crisis need additional study. 5. Enhance support for developing country scientists and institutions for biodiversity research and conservation

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis

    Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC.</p> <p>Methods</p> <p>We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression.</p> <p>Results</p> <p>There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r<sub>s </sub>= 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r<sub>s </sub>= 0.499, p = 0.03) in the tumour islets.</p> <p>Conclusion</p> <p>Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.</p

    Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Get PDF
    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson’s disease, essential tremor, Alzheimer’s disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year’s international Think Tank, with a view toward current and near future advancement of the field

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A
    • …
    corecore